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Abstract 

JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear 
iiiechanics problems. A set of continuuin equations describes the nonlinear iiiechanics involving 
large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. 
The method is iniplemented in a three-dimensional setting with various methods for accelerating 
convergence. Sliding interface logic is also implemented. An eight-node Lagrangian iiniforin 
strain element is used with hourglass stiffness to control the zero-energy modes. This report 
documents the elastic and isothermal elastic-plastic material model. Other inaterial iiiodels, 
docuinented elsewhere, are also available. The prograin is veckorized for efficient performanc,e 
on Cray computers. Sample problems described are the bending of a thin beam, the rotation 
of a unit cube, and the pressurization and thermal loading of a hollow sphere. 



I would like to acknowledge several people who have been iustruiiiental in the creation 
of JACSD. In the beginning this work could not have been accoinplished without the 
support and encouragement of Sam Key, my supervisor. Steve Burcliett supplied numer- 
ous highly nonlinear problems to solve, which greatly helped define JAC3D’s capabilities. 
Ray Krieg’s contribution of the secant moduli derivation for the elastic-plastic model and 
Mark Blaiiford’s restart algorithm for the conjugate gradient procedure are appreciated. 
Help in the preparation of tlie nianuscript by Joe .Jung and Mark Blanford is also greatly 
appreciated . 

This report was prepared under the Yucca Mouiitaiu Project WBS uutnber 1.2.4.2.3.1. 
The data in this report was developed subject to QA coiitrols iu QAGR S124231B, Re- 
vision 0, PCA 1.0, Task 1.1; tlie data is not qualified and is not to Be used for licetising. I 

4 I 



Contents 



. . . . . . . . . . . . . . . . . .  41 

41 a1 with Combined Hardening . . . . . . . . .  

ic Hardening . . . . . . . . . . . . . . . .  

us . . . . . . . . . . . . . . . . . .  50 

m . . . . . . . . . . . . . . . . . . . .  53 

6.2.1 Force Conditions . . . . . . . . . . . . . . . . . .  56 
6.2.2 Kinematic Conditions . . . . . . . . . . . . . . . .  56 

6.3 Diagonal Assembly . . . . . . . . . . . . . . . . . . .  57 

. . . . . . . . . . . . . .  7 . Loads and Boundary Conditions 59 

ent Constraints . . . . . . . . . . . . .  59 
Displacement Constrajnts . . . . . . . . .  59 

7.2.2 Nodal Forces . . . . . . . . . . . . . . . . . . .  6 2  
7.2.3 Gravity or Body Forces . . . . . . . . . . . . . . .  62 

8.1 Elastic Problems for Verification of Continuun~ and Truss Eletnents . . .  65 
8.1.1 Cantilever Beam . . . . . . . . . . . . . . . . . .  65 

ion Problems . . . . . . . . .  76 

. . . . . . . . . . . . . . .  76 

. . . . . . . . . . . . .  83 

. . . . . . . . . . . . . . . . . . . .  7.2.1 Pressure 60 

. . . . . . . . . . . . . .  8 Verification and Sample Problems 65 





Figures 
2.1 
4.1 
5.1 
5.2 

5.3 

5.4 
5.5 

. 5.6 
6.1 
6.2 
7.1 
8.1 
8.2 
8.3 
8.4 
8.5 
8.6 
8.7 
(3.8 
8.9 
8.10 
8.1 1 
8.12 
8.13 
8.14 
8.15 
8.16 

8.17 

8.18 

Original. Deformed. and Intermediate Configurations of a Body . . . . .  
Mode Shapes for the Eight-Node Constant Strain Hexaliedral Elemetit . . 
Yield Surface in Deviatoric Stress Space . . . . . . . . . . . . .  
Conversioii of Data From a Uniaxial Tension Test to Equivale~t Plastic 
Strain Versus von Mises Stress . . . . . . . . . . . . . . . .  
Geometric Interpretation of the Consisteucy Coiiditiou for Kinematic Hard- 
ening . . . . . . . . . . . . . . . . . . . . . . . .  
Effect of the Hardeniug Parameter on Uiiiaxial Response . . . . . .  
Geometric Interpretation of the Iiicremental Form of the Cousistency Con- 
d i t i o ~ ~  for Conibiiied Hardening . . . . . . . . . . . . . . . .  
Geometric Interpretation of the Radial Return Correction . . . . . . .  
Master-Slave Relationships for Slidiug Interfaces . . . . . . . . . .  
Exaiiiple of the Neighboring Face Array . . . . . . . . . . . . .  
Definition of a Pressure Bouudary Coudition Along an Element Face . . 
Finite Element Model for Beam Problem . . . . . . . . . . . .  
Comparison of Displacements for a Beam with Gravity Loading . . . . .  
Iuput for the Pressure-Loaded Beam Problem . . . . . . . . . . .  
End Displacement for a Beam with Uniform Pressure Loading . . . . .  
Deformed Shape of the Beam under Pressure Loadiug . . . . . . . .  
Description of Unit Cube Rotation Problem . . . . . . . . . . .  
Input for Uuit Cube Rotation Problem . . . . . . . . . . . . .  
Stress Results for Unit Cube Rotation Problem . . . . . . . . . .  
Octaut Finite Elemeut Model for Sphere Problem . . . . . . . . .  
Sector Finite Element Model for Sphere Problem . . . . . . . . . .  

Iuput for Sector Model. Pressurized Sphere Problem . . . . . . . .  
Geometry for the Itotating Ring Problem . . . . . . . . . . . .  
Inpui, for the Rotating Riug Problem . . . . . . . . . . . . . .  
Effective Stress Response of the Rotating Ring . . . . . . . . . .  

SphereProblem . . . . . . . . . . . . . . . . . . . . .  

Radial Displacement for the Pressurized Linear Elastic Sphere Problem . . 

Effective Stress Distribution for the Pressurized Elastic/Perfectly-YlMtic 

17 
30 
42 

44 

46 
47 

49 
50 
53 
55 
61 
67 
67 
68 
69 
69 
70 
71 
72 
73 
73 
74 
75 
76 
77 
78 

79 
Effective Stress Distribution for the Pressurized Elastic/Plastic Strain-Hardening 

Effective Stress Distribut iou for the Thermally- Loaded Elastic/Yerfectly- 

SphereProblem . . . . . . . . . . . . . . . . . . . . .  81 

Plastic Sphere Problem . . . . . . . . . . . . . . . . . .  



Tables 
4.1 Orthogonal Set of Base Vectors . . . . . . . . . . . . . . .  31 
4.2 Nodal Permutations . . . . . . . . . . . . . . . . . . .  34 
4.3 Three Possible Orientations of Node Nuiiiberiiig . . . . . . . . .  34 
4.4 Nowero Ternis Generated by Applying Asymmetry . . . . . . . .  34 
4.5 Coordinate Axes Permutations . . . . . . . . . . . . . . .  34 
4.6 Finite Rotation Algorithm . . . . . . . . . . . . . . . .  39 





1. Introduction 

1.1 Perspective 

JACSD is a finite element computer program for solving large deforiiiatioii, tetn- 
perature-dependent quasi-static mechanics problems in three dimensions. A iioiiliiiear 
conjugate gradient technique ((Xi technique) is used to solve the governing nonlinear 
equations. A material model for elastic and isothernial elastic-plastic behavior with 
cotxibitied kinematic and isotropic hardeiiiiig is described in this report. Other material 
models, documented elsewhere, are also available. An eight-node Lagrangian uniform- 
strain element is employed with hourglass stiffness to control the zero-energy modes. 

JACSD is very similar to the two-dimensional program JACZD [l]. The JAC2D and 
JACSD programs are the result of research to develop a reliable solution algorithm for 
solving quasi-static problem which executes efficiently on vector-processing computers. 
The nonlinear conjugate grdieiit method selected has proved to be very effective far 
solviiig three-ditiiensioiial problems. 

1.2 Background 

For the calciilatioii of the nonlinear quasi-static response of solids, there is a need 
for efficient and reliable solution methods. In recent years, finite elellielit iioiiliuear 
solutions to static problem have been obtained by using either a modified or unmodified 
Newton-Raphson method. Use of these stiffness approaches is troublesome because of 
the difficulty in deciding when to reformulate the stiffness iiiatrix to keep the solutioii 
from diverging or to accelerate the convergence. 0 1 1  the opposite elid of the spectrum of 
solutioii methods are indirect iterative methods, which do not iiivolve a stiffness matrix. 

The impetus to try indirect iterative solvers coiiies from several sources. First, 
a more robust method than tlie Newton-Raphson algoritliiii is needed to solve highly 
iioiiliiiear probleiiis iiivolviiig geometric stiffening due to large deformations, stiffening 
and softening due to material response, and sudden changes in stiffness due to cotitact 
surface constraints. Second, there is a need to solve three-dimensional problems efficiently 
without a severe restriction 011 the tiumber of elements that can be used because of 
hardware liiiiitatioiis in storing and retrieving the stiffiiess iiiatrix from a magnetic disk. 

Soiiie of the motivatioii for trying indirect soliitioii methods was obtained by oh- 
serving the excellent results which explicit ixiethods have produced in solving nonlinear 
traiisieiit dynaiiiics problems. These methods have bee11 very efficient in  terms of coiii- 

piiter resources. The data storage and code zrchitecture for dynamics problems are very 
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similar to what is needed for indirect solution of statice p 
es include HONDO (21, WULFF [3 

3D [7]. The research problem w 
these concepts to aa indirect 

In the early 196Os, indirect solution techniques such as successive overrelax 
Gauss-Seidel, and Jacobi methods were tried on linear finite element equation 
soou discovered t 
much more &c 

ion procedures (Gaussian elimination, for ex 
ct techniques if the equations were ordered in an ef- 
inear or mildly nonlinear problems were being solved 

the question of whether to use iterative techniques for 
three-dimensional problems. His technique is discussed by Irons [SI. Indirect methods, 
if successful for two- and three-dimensional problems, could substantially reduce stor- 
age requirements and input-output’ operations when compared to the stiffness method. 
Moreover, the code could be highly vectorized, as demonstrated by the explicit dynamics 
codes. A reliable iterative method, even if expensive, is superior to a stiffness approach 
that does not reliably produce a solution on the first attempt. 

After examining and trying various explicit techniques, the CG technique [9, 10, 111 
was selected for solving highly nonlinear solid mech cs problems. These nonlinear ef- 
fects include material nonlinearities and geometric linearities due to large rotations, 
large strains, and surfaces that Elide relative to one another. The CG technique was se- 
lected mainly for its reliability. In particular, convergence for a linear problem is guaran- 
teed (with an infinite-precision machine) in N steps, where N is the number of unknowns 
in the problem. Also, various investigators in the field of linear programming and opti- 
mization are using the CG technique with success on very nonlinear problems [12, 13,141. 
Nonlinear versions of the CG technique are described by Daniel [15] and Bartels [IS]. 
Several acceleration techniques for the linear CG methods are discussed in an article by 
Fletcher and Reeves [12]. The JAC3D implementation of the CG technique for solviug 
nonlinear equations is discussed in Section 3.3. 

In this document, the governing equations are formulated in the current configuration 
of the body, with particular attention being paid to the rotation of the stress tensor. The 
formulation is extremely convenient for the CG method because a stiffness matrix need 
not be calculated. Variational sta then presented that allow a finite element 
representation of the equations of 

tructural mechanics 
iety of ancillary capabilities to result I 



As a member of tlie Satidia National Laboratories E~gineering Analysis Code Access 
System (SEACAS) [17], .JACSD benefits from thdricli computational analysis environ- 
ment. Geometry atid mesh infortnation for the analysis is read from a file in tlie GENESIS 
format [IS], which can be produced by a riumber of mesh generators and other preproces- 
sors. Results are written to afile in tlie related EXODUS format [19], which is compatible 
with a suite of postprocessors aud visualization aids. 

1.3.2 Element Birth and Death 

Tlie program has tlie capability to add elements (element birth) and/or delete ele- 
ments (element death) at selected times in tlie solution. This capability has proven to be 
an important feature, expecially for evaluating the residual stresses developed as a result 
of various manufacturing processes. For example, many electronic assemblies are built 
up by using a cascade of soldering steps. Two parts are joined with high-temperature 
solder, then a third part is added with a lower melt point solder, aiid so forth. lJsiiig 
the element birth capability, this manufacturing process can be realistically niadeled, 
allowing new parts to appear at  each step. In tlie same niaiiner, changes in residual 
stress as the result of milling, drilling, or etching can be realistically modeled with the 
element death capability. As another example, mining operations can be modeled with 
tlie element death capability. 

1.3.3 Material Models 

At tlie present time, several nonlinear material constitutive models are incorporated 
in tlie program, with only one described here. Tlie model is an isotliernial elastic/plastic 
model with combined kinematic and isotropic hardening. Tlie other models are docu- 
mented separately, and more can be easily added. For a given problem, any or all of tlie 
material models which exist in tlie code can be used. 

As an example, tlie elastic/plastic model is used extensively to describe the response 
of materials used in electronic assemblies. It has been successfully used to describe the 
behavior of ceramics, rigid polymers, solder at low temperature, and a host of otlier 
materials. 

1.3.4 Initial Stress 

Each material may be assigned an initial value for each compone~it of stress io the 
refereuce configuration. The user may also specify a linear variation of stress i n  the t- 
coordinate direction. Iuitial stresses are typically specified to be in equilibrium with tlw 
initial bouiidary conditions. As an option, the user may request that the progratn ralcn- 
late an initial equilibrium state before the first load step. In this case, two equilibrium 



passes are made prior to beginning the load history; tho displacements are zeroed out 
and the state varial>Ies’reinitiaIized after each pass. 

1.3.5 Kinematic Constraints 

The gmnietric boutidary conditions allow for nodal points to be rigidly fixed in space 
and time or to Le defined to move in a specified time-dependent manlier. This capability 
allows for realistic modeling of iiiaiiy quasi-static pliysical processes. For example, in 
electroiiics assemblies, connectors are often required. The mating of a coiitiector pair can 
be described as press-fitting a contact pin into a housing. The requireiiients are that t!ie 
contact force be sufficiently lrigli to maintain electrical continuity; however, the stresses 
in the housing must reinain linearly elastic so that the connector can be reliably used 
over and over. Time-dependent boundary coiiditions applied to the pin in conjuiiction 
with a contact surface definition between the pin and hoiising allow this problem to be 
modeled easily. 

1.3.6 Loads 

The program has the capabi!ity to apply a variety of mechanical time-dependent 
and/or time-constant loads to a model. These loads can be point loads, surface pres- 
sures, or body forces (arising from acceleration or electromagnetic fields). With these 
definitions, a great variety of meclianical loading applications can be modeled. 

1.3.7 Thermal Input 

The program has the capability to accept thermal input defining tlie temperature 
liistory of tlie structure. Tlie temperature history can be obtained from a separate ther- 
mal analysis computer program, or generated with a user-supplied FORTRAN program 
If tlie temperature history is uiliforni throughout tlie structure, it can be generated within 
JACSD itself. Tracking the temperature history is important for a variety of applications. 
Residual tlierinal stresses can be developed during the manufacture of electronic assem- 
blies; examples are soldering and brziziiig. The stresses are developed because of (1) tlie 
difference in tlie thermal expa~ision characteristics of the various materials in the assenl- 
bly, or (2) the transient nonuniforin temperature history. During use of the electronic 
assembly, the same problem arises as power is applied or removed. In addition, material 
response can vary as a function of temperature. 

1.3.8 Contact Surfaces 

The program can also model contacting surfaces. The contact surfaces can be fixed 
together, sliding without friction, or sliding with friction. They can be allowed to c los~ 
or open as the solution dictates. This Capability allows many physical processes, such 
as connector insertion, to be realistically modeled. Tlie ‘fixed” contact surface has  also 
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2. Governing Equations 

This chapter gives the coiitiiiuiim niecha~iics concepts on which the developlnelit of 
the iiumerical algorithnns in the following chapters is based. Boldface characters denote 
tensors. The order of the tensor may be determined from the context of the equation. 

2.1 Kinematics 

A material point in tlie reference configuration Bo with position vector X occupies 
position x at time t in the deformed configuration B. Hence the notation x = x ( X , t ) .  
The iiiotioii from the original configuratioii to tlie deforlned configuration shown in Fig- 
ure 2.1 has a deformation gradient F given by 

Applying the polar decomposition theorem to F, 

F = VR = RU, 

(2.1) 

Figure 2.1. Original, Deformed, and Intermediate  onfi figurations of a Body. 
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where V and U are 

tnediate orientations alternate decom 

The incremental algebraic algorithm to determine R is described in Section 4.2. 

The velocity of the material point X is written as v = %, where the superposed dot 
indicates time differentiation holding the material point fixed. The velocity gradient is 
denoted by L and may be e x p d  as 

L=-=--=$'F-l bv avax . 
ax axax 

The velocity gradient can be written in terms of its sytmnetric (D) and antisymmetric 

L = D + W .  
Using the right decomposition from Equation 2.2 in Equation 2.3 gives 

L = iutT + RUU-'RT . 
Dienes [21] denoted the first term on the right side of Equation 2.5 by Q: 

Both W and f2 are antisymmetric and represent a rate of rotation (or angular velocity) 
about some axes. In general, Q # W. The difference arises when the last term of Equa- 
tion 2.5 is not symmetric. The symmetric part of UU-l is the unrotated deformation 
rate tensor d as defined below (note that both 6 and U-' are syuuiietik). 

There are two possible cases that can cause rotatioil of a material line element: rigid 
body rotation and shear. Since total shear vanishes along the axes of principal stretch, 
the rotation of these axes defines the total rigid body rotation of a material point. 

body rotation at a material point (as shown 

D and W have no 

It can also be shown that W 



(2.10) 

(2.1 1) 

2.9 results in the expression that 
Dienes gave for detertnining from W and 

(2.12) 

(2.13) 
where 

roduct VD is symmetric, then the principal axes of 
of the current stretch V. Clearly, 

s condition siuce D, and consequelrtly the zi in 



measures to T and u are D and d, respectively. These strain rates were defined by 
Equations 2.4 and 2.7, respectively. 

Tlie principal of Material Frame Indifference (or objectivity) stipulates tliat a con- 
stitutive law must be iiisensitive to a change of reference frame [‘23]. This requires that 
only objective quantities may be used in  a constitutive law. An objective quantity is one 
that transforins in tlie same iiianner as the energy conjugate stress and strain rate pair 
under a superposed rigid body motion. The fundai~iental advantage of tlie unrotated 
stress over the true stress is tliat tlie material derivative of o is objective, whereas tlie 
material derivative of T is not. 

A stress rate, called tlie Green-Naglidi rate by. Jobnson and Baiiiniann, can be 
derived by transforming the rate of the unrotated Cauchy stress to the fixed global frame 
as follows: 

The Green-Naghdi rate is kinematically consistent with the rate of Cauchy stress. This 
statement means that B is identical to T in the absence of rigid body rotations. 

B = R & R ~ = T - - Q T + T Q .  (‘2.15) 

A distinct advantage of the uiirotated reference frame is that all coiistitutive niodels 
are cast without regard to finite rotations. This greatly siniplifies tlie nunierical imple- 
mentation of new constitutive models. The rotations of global state variables (e.g., stress 
and strain) are dealt with on a global level, which ensures that all constitutive models 
are consistent. Internal state variables (e.g., backstress) see no rotations whatsoever. 

The drawback to working in the unrotated reference frame is that the rotation tensor 
R must be accurately determined. The incretnental, algebraic algorithm to acconiplisli 
this task is described in Section 4.2. 

2.3 Fundamental Equations 

The quasi-static equations of inotion for a body are 

V - T + p b  = 0 ,  (2.16) 

where p is the weight density per unit volume and b is a specific (force per weight) body 
f0rc.e vector. 

The solution to Equation 2.16 is sought subject to tlie boundary conditions 

u = f(t) on .su , (2.17) 

where S,, represents the portion of tlie boundary on wliicli kinematic qiiantities are spe- 
cified (displacement and velocity). In addition to satisfying the kinematic. boundary 
conditions given hv Equation 2.1 7, the traction boundary conditions niust be satisfied as 

T . n = s ( t )  011 S;. , (2.113) 



where S;. represents the portion of the boundary 011 wliich tractions are specified. The 
boundary of the body is given by the union of S,, and ST, and for a valid mc?chanics 
problem, S,, and 5';. have a null intersection. 
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theory in which velocities are 
quasi-static mechanical pro- 

coelastic and creeping materials. 
tic materials, proceed indepeu- 
event, an incremental solutiou 

lution increment going from 

At = tn+l - t ,  , 
e time step (or load step) number. 

1 or tive Function 

The goal is to obtain a solution at discrete times by finding the miuimutii of a 
nonlinear functional which represents the fundamental equations. We begin 111 defining 
the functional or objective function by writing the power input to the body (which is 
zero for the quasi-static problem) as 

(3.1) 

d V is the volume of the M y  iu tlie deformed coufigura- 
the body can be found in Malvera 1253. 



A functional ll is now defined by equating Equations 3.1 and 3.2 as 

[tiiTji,j + Tjjii,j] dV - sitii dS = O . ( 3 .:I n = J ,  I 
If the equilibrium Equations 2.16 are substituted for Tji,j in  Equation 3 . 3 ,  the second 
term is integrated by parts, and tlie first variation is taken, the result i s  

(3.4) 

The Euler equations are the tractioii boundary conditions (Equations 2.18) and the state- 
inent of equilibrium (Equations 2.16). If, in Equation 3.4, tlie term involvirig Tji,j is 
integrated by parts, the following first variation is obtaiiied: 

(3.5) 

The iniiiiiiiuiii of the functional at a specified time will bc, faund with the use of the 
nonlinear conjugate gradient procedure. Equation 3.5 is used to determine tlie gradient 
of tlie objective function (is., the residual forces in the body) at each iteration, and tlie 
finite element method is used to discretize the body. Since 6tij represents an arbitrary 
virtual velocity field, Equation 3.5 is rewritten (with tlie use of the traction boundary 
condition Equation 2.18) as a summation of the contributions of force froin each finite 
element to obtain 

The summation symbol represents the assembly of element force vectors into a global 
nodal force array. It is assumed that the reader understands the details of this assembly. 
In general, while iterating towards a solution within a load step, the value of tlie residual 
vector R in Equation 3.6 will not be zero. In fact, cotivergence is defined by a tneasure 
of how close R is to zero. 

3.3 Conjugate Gradient Algorithm 

For a quasi-static time step, a trial solution of components of the velocity vector is 
substituted into the set of nonlinear Equations 3.6 and tlie residual vector (the gradient 
of the functional ll) is obtained: 

R(G)=6n(ti) . (3.7) 

In the indirect iterative solution procedure, a set of velocity coniponents is sought that 
will make the residual vector zero or acceptably sxiiall. The conjugate gradient tnetliod 



is used to dficiently obtain directions in which to search for the velocity solution. Using 
a form of the conjugate gradient method obtained by coinbining a linear preconditioned 
version [ l l ]  and a nonlinear version [16], the iterative process is started by assul&ing a 
vector of velocity components at the nodes of the finite element mesh, ti,, with j denoting 
the iteration number. The residual vector, the gradient of the functional, becomes 

Rj =R(Zij) . (3.8) 

A preconditioniiig matrix M (the diagoual of the linear stiffuess matrix) is introduced to 
define a generalized gradient vector 2 as follows: 

M,&Zj = Rj . (3.9) 

The coiiditioning is helpful when the body contains materials of different stiffness or 
elements of widely varying sizes. 

If j = 0, the initial search direction is the negative of the gradient, the steepest 

(3.10) 
descent direction PO: 

PO = -20 = -M,;'li$ 
Subsequently, for j > 0, search directions that are conjugate to the previous direction 
are chosen as follows: 

Pj = -Zj  + p j  Pj-1 

where B; has the value 
(3.11) 

(3.12) 

Equation 3.12 is a geueralization of a method known as the Polak-Ribi6re algorithm, as 
discussed by Powell [14]. The variables ti are then updated by searching for the least 
value of n(u) from u along the direction Pi. Therefore 

Uj+l = z i j  + aj Pj (3.13) 

where crj  is the value that minimizes the functioii of oiie variable. (The process of fiudiug 
cr j  is known also as a liue search.) Therefore 

R(aj)  = 6n(tij + a jP j )  (3.1 4 )  

After calculatiug Equation 3.13, if the residual R is not acceptably siiiall, auother itera- 
tion is begun. Efficient use of the conjugate gradient method greatly depends upon the 
cost of the liue search (calculating CY). 

3.4 Gradient Calculations 

The cost of solving problenis with the conjugate gradient iiietliod is doiiiiiiatad by the 
11s. Tliere are two places in the coujugate gradient procedure 

n d e d .  The first occurs in computing Equation 3.8, 
h iteration. The second set of gradient calculations is 

the line search represented by Equation 3.14. 



3.4.1 Residual Force 

Tlie calculation of tlie residual force vector or gradient of the objective function, 
Equatioii 3.6, is acconlplislied by calculating contributions of force from severdl sources. 
Forces are caused by tlie state of internal stress, artificial forces to stabilize singular 
inodes of elements (hourglass modes), external applied tractions, internal body forces, 
and externally applied point loads. The specific method of calculating these forces varies 
with the element type, as described in Chapter 4. 

3.4.2 Line Search 

It is necessary to find aj which will inininhe Equation 3.14. Equation 3.14 is 
noillinear in aj, and it is often solved iteratively for aj using Newton’s method. However, 
if tlie problem is highly nonlinear, Newton’s method can take inany iterations. This 
requires many residual calculations which will dominate the cost of an analysis. Following 
Bartels and Daniel [16], the iiiiniinizatioii solution can effectively be approximated by 
one step of Newton’s niethod starting with aj = 0. Tlie Newton process will result in 
the following expression for cui:  

(3.15) 

Tlie term Rpj represents a residual calculation with the Pj vector substituted for tlie 
velocity vector. The material constitutive model is required to supply a secant inodulus 
array for use in calculating Rpj . If the inaterial model cannot supply a secant modulus, 
then it is approximated using the elastic moduli of tlie material. The use of tlie secant 
inodtilus Snd the single-step Newton’s method to perform the line search has proven to be 
very econoinical when tlie material responds according to the elastic/plastic constitutive 
law. If the. problem is linear, both geometrically and in material response, then the 
single-step Newton’s method perform an exact line search for aj. 

3.5 Restarting the Algorithm 

Tlie algorithm described in Sectioti 3.3 draws its strength froin finding new search 
directions which are orthogonal (or conjugate) to those already taken. In some highly 
uonliiiear problem, however, this can bec,onie a drawback. 

Tlie problem comes when tlie nonlinear functional 6Il wliicli depends on u as well as 
on ti lias cliaiiged enough from ti0 to uk, or when roundoff error or other approximations 
liave accumulated to the point that the solution that ininiinizes Equation 5.8 may have 
substantial components in directions that have already been searched. This beconies 
apparent when no  further reduction in tlie size of the residual is obtained even after a 
great many iterations, or when the residuals begin growing very large (“blowing up”). In  
such case one must start the algorithm over again using a iiew (perhaps closer) initial 
guess. 
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In such cases, the program can pick a new initial guess “on the fly,” selecting as its 
new guess the vector t i j ~ , ,  which has produced the smallest residual R j ~ .  so far in the 
current load step. Three parameters governing this strategy may be adjusted usiug the 
following input record : 
CGRESET LIMITS itstrt, itrset, tolfac 
First, the new guess 2ijd. must differ euough from the original guess t;o that it will 
produce better results. The first parameter, itstrt, specifies how many iterations to wait 
before looking for a minimum residual. i.e., it is required that j,,h > itstrt. The default 
value is oiie percent of the uumber of degrees of freedom: for a 1000-node problem, iktrt 
would default to 30. 

The next problem is to decide when to give up on the current CG iteration series 
and try a new guess. Curreutly two situations are targeted: (1) many iterations with 
no further reductio3 in residual size, and (2) a large increase in residual size, indicatiug 
divergence. The second CGRESET LIMITS parameter, itrset, specifies the nurnber of 
iterations to allow between finding a minimum and restarting the CG algorithm. The 
default value of itrset is half the number of degrees of freedom. The third parameter, 
tolfae, defines how much growth in the residual norm indicates divergence. Its default is 
1000, meaning that if the norin of the residual grows three orders of magnitude from its 
minimum value so far, restart the algorithm. Both these defaults are intentionally loose, 
so that the restart logic will provide a safety uet without interferiug with a properly- 
functioning CG solution. 

In the extreme, setting itstrt to 0 and itrset to 1 results in restarting the CG algorithm 
every iteration. This reduces tlie iteration scheme to the steepest desceut method, always 
moviug the solution in tlie direction of the current residual. Convergence of the steepest 
descent method is ofteii much slower than that of the conjugate gradient method. The 
CG algorithm needs a “long leash” to fuuctiou properly; if the CGRESET LIMITS are 
set too tightly, the convergeuce rate will suffer accordiugly, approacliing that of tlie 
steepest descent method. For a problem that is just not convergiug very well, watching 
the progress of the iteratioris with ITERATION PRINT turned 011 should indicate wliat 
CGRESET LIMITS may be most helpful. It may be beneficial to reduce tlie size of the 
load step and/or adjust the TRIAL VELOCITY FACTOR as well. 

3.6 Convergence 

Global convergeuce at the end of a time step is defioed to have taken place whet1 
any of tlie followiug inequalities is satisfied: 

(3.16) 
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or 
(3.18) 

11 11 denotes the Lz iioriii of a vector. In Equation 3.16, F,, is a vector coiitaiiiirig the 
applied tractions, body forces (gravity forces), thermal forces, atid the reactions at nodes 
where iioiizero displacetnent boundary coiiditioiis are applied. Equation 3.17 provides a 
convergence check for situations where tlie applied loads are sinal1 or iioiiexistent (Le., 
when unloading to a zero load). Equation 3.18 is used to measure the change in the veloc- 
ity vector due to one conjugate gradient iteration. Its main purpose is stop the solution 
attempt if little progress is being made towards a solution. Tlie velocity coiivergziice 
criterion should not be relied upon ils a statement that the problem is to a state which is 
close to equilibrium. However, Equations 3.16 and 3.17 are good measures of how close 
tlie problem is to a state of equilibrium. Tlie prograin will tarininate: iterations for tlie 
load step if any of these coiiditioiis is satisfied. The default tolerances for Equations 3.16 
atid 3.18 are 1.0 x respectively, whereas RESIDF in Equation 3.17 
defaults to zero. 

arid 1.0 x 

If noiie of the above coiiditioiis is satisfied within tlie user-supplied MAXIMUM IT- 
ERATIONS, tlie program will first go back to the iterate that produced tlie smallest 
residual during the load step iterations. If tlie relative size of the corresponding residual 
Rjmin is less than the user-specified MAXIMUM TOLERANCE, then ijmin is accepted and 
tlie program will proceed to tlie iiext load step. If not, Gjmin is written to tlie plot file and 
tlie analysis is terminated. Tlie default value for MAXIMUM ITERATIONS is the tiuinber 
of degrees of freedom, while MAXIMUM TOLERANCE defaults to zero. 



4. Finite Element Calculations 

To define an isoparatiietric finite element, the spatial coordinates 5; are related to 
the nodal coordinates xi1 through the isoparametric shape functions 41 as follows: 

In accordance with indicia! notatioii coiivention, repeated subscripts imply suiiimation 
over tlie range of that subscript. The lowercase subscripts have. a range of three corre- 
sponding to tlie spatial coordinate directions. Uppercase subscripts have a range corre- 
sponding to the iiuniber of element Ilndes. 

Tlie same shape functions are used to define the element displacement field in ternis 
of the nodal displacements uil: 

ui = U # $ I  . (4.2) 

Since the same shape functions apply to both spatial coordiiiates and displacements, their 
material derivative (represented by a superposed dot) niust vanish. Hence, the velocity 
field may be given by 

zii = 2iilq5I . (4.3) 

Tlie velocity gradient tensor L is defined in ternis of nodal velocities as 

By convention, a coinma preceding a lowercase subscript denotes differentiation with 
respect to the spatial coordinates (e.g., zii,j denotes dziildzj). 

4.1 Element Library 

Two element types are currently iiicluded in JACSD: one continuum element and 
one structural element. Tlie contiiluuln element is ail eight-node uniform strain element. 
The structural element is a two-node elastic truss. 

4.1.1 Eight-Node Uniform Strain Element 

The eight-node three-dimensional isoparametric eleinent is widely used in comp11- 
tational mt?chanics. The determination of optimal integration scliemes for this elcmeut, 
however, presents a difficult dilemma. A one-point integration of the element under- 
integrates the element, resulting in a rank deficiency that manifests itself in  spurious 
zero energy modes, cornrnonly referred to as lioiirglass modes. A two-by-two-by-two in-  
tegration of the element over-iutegratm the element and can lead to serious problatns of 



element locking in fully-plastic and incompressible problems. The eight-point integratio~~ 
also carries a tremendous computational cost penalty compared to the one-point rule. In 
JAC3D a one-point integration of the element is used and implemented with ;111 hour- 
glass control scheme to eliminate the spurious modes. The development presented below 
follows directly from Flanagan and Belytschko [26]. 

The 3-D isoparametric sLape functions map the unit cube in &-space ((j is written 
explicitly as ( ( , q , c ) )  to a general hexahedron in si-space, as shown in Figure 4.1. The 
unit square is centered at the origin in space so that the shape functio~ls may be 
coiivenie~~tly expanded in terms of an orthogonal set of base vectors, given in Table 4.1, 
as follows: 

1 1 1 1 1 1 1 1 
4I = -cI 8 + plr + q ~ ~ 2 1  + p 3 l +  ,tlcrlI + - c~ r ,~  2 + -tqr31 2 + Fttlcr41 2 (4.5) 

Note that the notation follows that used by Flanagan and Belytschko. In their work the 

The above vectors represent the displacement modes of a unit cube. The first vector, 
CI, accounts for rigid body translation. C is called the summation vector because it may 
be employed in indicia1 notation to represent the algebraic sum of vector components. 

The linear base vectors denoted by Ail may be readily combined to define three 
uniform normal strains and three rigid body rotation inodes for the unit cube. The Ail 

are referred to as the volumetric base vectors since, as is illustrated below, they are the 
only base vectors which appear in the element volume expression. 

1 range from -3 to ; . 

=I 4 I c 

fl l  'a '31 r41 

Figure 4.1. Mode Shapes for the Eight-Node Constant Strain Hexahedral Element. 





(4.10) 

Combining Equations 4.7 and 4.9, the nodal forces are expressed by 

f i J  = Z j B j J  . (4.1 1) 

Computing nodal forces with this integration scheme requires evaluation of the gra- 
dient operator and the e l m x d  volume. These two tasks are linked since 

x&j = a;, , (4.12) 

where &j is the Kroneker delta. Equations 4.1, 4.9, and 4.12 yield 

X i J B j l  = l e ( Z i J 4 J ) , j  dv = V a i j  (4.13) 

Consequently, the gradient operator may be expressed by 

6V 
dXiJ 

B ~ J  = - . (4.14) 

To integrate the element volume in closed form, the Jacobian of the isoparatnetric 
transformation is used to transform to an integral over the unit cube: 

The Jacobian is given in terms of the alternator e i j k  as 

ax ay az J = ei jk---  . a& h j  a ( k  

Therefore, Equation 4.15 can be written as 

(4.15) 

(4.16) 

a1 for all hexahedrons. Furthermore, 
it 



Therefore, applying Equations 4.14 and 4.19 to 4.17 yields the f&iW form fw evalu- 
ating the B-matrix: 

In light of Equation 4. , it is evident that e hating each component of C I J K  involva 
integrating a polynomial t at is at most bi-quadratic. However, since integration is over 
a symmetric region, m y  term with a linear dependence will vanish. The only terms to 
survive the integration will be the constant, square, double square, and triple square 
terms. Furthermore, the alternator properties cause half of these remaining terms to 
drop out. The resulting expression for CIJK is 

(4.21) 1 
192 C I J K  = -e i jk  (QAilAjJAkK + A i l r k J r j K  + r k l A j J r i K  + r j I r i J A k K )  

The above expression is evaluated using Table 4.1, after which practical formulas 
for computing the B-matrix and volume are developed. Since CIJK has the alteruator 
properties given iu Equation 4.19, only 56 distinct nonzero terms (combinations of eight 
nodes taken three at a time) are possible. However, the volume must be independent of 
the selection of node 1, which implies that CIJK is invariaut if the nodes are permuted 
according to Table 4.2. Consequently, only 21 terms (combinations of seven nodes taken 
two at a time) may be independent. Furthermore, once node 1 is selected, three ori- 
entations of the node uumbering system are possible, as given by the permutations in 
Table 4.3. Therefore, only Seven terms of CIJK need be evaluated. 

" 

Seven independent terms of C I j K  are listed in Table 4.4. These terms may be 
evaluated via Equation 4.21 and Table 4.1. Only three of these seven terms do uot 
vanish, aa indicated in Table 4.4. All other nonzero terms of CIJK are found by permuting 
the nodes according to Table 4.2 and usiug the alternator properties of Equation 4.19. 
Alternatively, the nonzero terms .may be generated by applying antisymmetry (GI J K  = 
-CIKJ) to Table 4.4, then permuting according to Tables 4.3 and 4.2, successively. The 

---fatter scheme straightforwardly results in fornlulas for computing the B-matrix. 

The first term of Bil is expressed as 

0 t her 
according to Tabla 4.2 an 
Table! 4.5. The element vo 

using the same formula after permuting the nodes 
tly, permuting the coordinate axes accmdiug to 

t easily computed by contracting the B-matrix aiid 
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Table 4.2. Nodal Periiiutatioiis 

1 2 3 4 5 6 7 8  
2 3 4 1 6  7 8 5 
3 4 1 2 7 8 5 6  
4 1 2 3 8 5 6 7  
5 8 7 6 1 4  3 2 
6 5 8 7 2 1 4 3  
7 6 5 8 3 2 1 4  
8 7 6 5 4 3 2 1 

Table 4.3. Thee Possible Orieiitatioiis of Node Nuinbering 

Table 4.4. Nonzero Terms Generated by Applying Asymmetry 

1 2 6  +E 
1 2 7  0 
1 2 8  0 
1 3 5  0 
1 3 6  0 

Table 4.5. Coordinate Axes Periiiutatioiis 

1 2 3  

3 1 2  
Fl 



Hourglaos Control Algorithm 

The mean stress-strain formulation of the uniform strain element considers only a 
fully linear velocity field. The remaining portion of the nodal velocity field is the so-called 
hourglass field. Excitation of these modes may lead to severe, unresistd mesh distortiou. 
The hourglass coutrol algorithm described here is taken directly from Flanagari atid 
Belytschko [26]. The method isolates the hourglass modes so that they may be treated 
independently of the rigid body and uniform strain modes. 

A fully h e a r  velocity field for the hexahedron can be described by 
. .  

;lit1 = Gj + C i j ( X j  - j j j )  . (4.23) 

The niean coordinates 2; correspond to the center of the elenient and are defined as 

1 
zi = - x .  r l  c I . 

The mean translational velocity is similarly defined by 

. 1  
8 

= - t i i ~ C ~  . 

The linear portion of the nodal velocity field may be expressed 
tion 4.23 to the nodes as follows: 

;!in- ,I - U i C I  5 + &i, j (ZjI  - Z j C I )  , 

(4.24) 

(4.25) 

.,y specializing Equa- 

(4.26) 

where C I  is used to maintain consistent iudex notation and indicates that i i  and E j  

are independent of position within the element. From Equations 4.10 and 4.26, and the 
orthogonality of the base vectors, it follows that 

;jl& = ti!;& = 8 t i  (4.27) 

(4.28) 

The hourglass field t$'f may now be defined by reinoving the linear portio11 of the nodal 
velocity field: 

Equations 4.27 through 4.29 prove that XI and B j l  are orthogonal to the liourglass field: 

ti$& = 0 (4.30) 

i 2 B j I  = 0 (4.31) 

Furthermore, it can be shown that the B-matrix is a linear combination of the voluinetric 
base vectors Ai,, so Quation 4.31 can be written as 

uhg = ui1 - Uil  *h (4.29) iI 

U$A,l = O  . (4 3 2 )  



Equations 4.30 and 4.32 show that tlie hourglass field is orthogonal to all the base vectors 
in Table 4.1 except the hourglass base vectors. Therefore, ti!: way be expanded as a linear 
c.ombination of the hourglass base vectors as follows: 

(4.83) 

The liourglass nodal velocities are represented by qia above (the leading constant is added 
to norinalize F a r ) .  The liourglass shape vector yel is defined such that 

(4.34) 

By substituting Equations 4.26, 4.29, and 4.34 into 4.33, then multiplying by 
using the orthogonality of the base vectors, the following is obtained: 

and 

With the definition of tlie mean velocity gradient, Equation 4.10, the nodal velocities 
above are eliminated. As a result, 7-1 is computed froin the following expression: 

(4.36) 1 
Ynr = r n r  - ~ B i i ~ i J r n J  

The difference between the hourglass base vectors rnI and the hourglass shape vec- 
tors +ynl is very important. They are identical if and only if the hexaliedron is a right- 
parallelepiped. For a general shape, I’,r is orthogonal to B ~ I  while is orthogonal to 
the linear velocity field zi?. While ral defines the hourglass pattern, -yaI is necessary to 
accurately detect hourglassing. 

For tlie purpose of controlling the hourglass iiiodes, generalized forces Qicu are defined 
conjugate to qin,  so that the rate of work is 

(4.37) 
1 

-ZiiIj$ = Z ~ i a q i a  

for arbitrary U ~ I .  Using Equation 4.34, it follows that the contributioii of tlie hourglass 
resistance to the nodal forces is given by 

(4.38) 
. f ?=$ l ia~a i  1 . 

In JACSD, an artificial stiffness resistance is used. In ternis of the user-specifiable 
parameter K ,  the resistance is given by 
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ass f o r m  should be orthogonal 
to or fnwn the ri 

ass control requires an &'hive shear ndulus.  
NT03D [7], is used for 

The constitutive respon oelastic relationship, 
tive shear modulus ji in terms of tile aud approximated as isotropic. 

s i ,  = S p e i j A t ,  (4.40) 

(4.41) 

(4.42) 

4.40 with the deviatoric strain rate and solving for 

1 
and 

d i j  - z d k k 6 i j  . 

(4.43) 

If the strain incremeuts are insi t, Equation 4.43 will not yield iiumerically nieaii- 
iugful results. In this circunlst 3D sets the effective shear modulus to aii iiiitial 
estimate, po. The effective modulus is not allowed to be greater than po or less thaii 
po x lo-*. 

4.1.2 'Ikuss Element 

from the deformation of a truss ele- I 



el ,  the global coiiiponents of force at the nodes are calculated by multiplying tlie stress 
times the truss cross-sectional area, and resolving the resulting axial force in tlie truss 
into global components based on the truss orientation. Changes in cross-sectional area 
due to elongation of the trim are not accounted for. 

4.2 Finite Rotation Algorithm 

As stated in Section 2.2, one of the fundamental numerical challenges in the devel- 
opment of an accurate algorithm for finite rotations was the determination of R, the 
rotation tensor defined by the polar decomposition of the deformation gradient F. An 
incremental algorithm is used for reasons of computational efficiency and numerical accu- 
racy. This algorithm is identical to that used in PRONT03D by Taylor and Flaiiagan [7]. 
The validity of the unrotated reference frame is based on the orthogoi!al transformatioil 
given by Equation 2.14. Therefore the crux of integrating Equation 2.6 for R is to main- 
tain the orthogonality of R. If one integrates R = C2R via a forward difference scheme, 
the orthogonality of R degenerates rapidly no matter how fine the time increments. The 
algorithm of Hughes and Winget 1271 is adopted for integrating incremental rotatio:~ as 
follows. 

A rigid body rotation over a time increment At may be represented by 

&+At = QAtxt  , (4.45) 

where Qat is a proper orthogonal tensor with the saint? rate of rotation as R given by 
Equation 2.6. The total rotation R is updated via the highly accurate expression below. 

&+at = QAA (4.46) 

For a constant rate of rotation, the inidpoint velocity and the midpoint coordinates 
are related by 

1 1 

Combining Equations 4.45 and 4.47 yields 

(4.48) 
At 

( Q A ~  - I)xt = - ~ ( Q A ,  + I)xt . 2 
Since xt is arbitrary in Equation 4.48, it may be eliminated. Solving for Q A ~ ,  

(4.49) 

The accuracy of this integration scheme is dependent upon the accuracy of the mid- 
point relationship of Equation 4.47. The rate of rotation must not vary significantly over 



the time increment. Furthermore, Hughes and Winget [27] showed that the couditioiiiug 
of Equation 4.49 degenerates as flat grows. 

The complete numerical algorithm for a single time step is showii in Table 4.6. This 
algorithm requires that the tensors V aud R be stored in memory for each element. 

Table 4.6. Finite Rotation Algorithm 

1. Calculate D aid  W 
2. Compute zj = ejjk&mhDqnk 

w = w -  2[V - I tr V]-'z 

I 3. Solve (I - F n ) R t + ~ t  = (I + 9Q)R1 
1 4. Calculate V = (D + W)V - VO 
5. Update Vt+~t = Vt + AtV 

' 6. Compute d = RTDR 
7. Integrate 6 = f(d, Q) 

I 8. Compute T = RaRT 

Q j  = Zei jkwk 

I 





modular form so that different materid models  cat^ 

here are seven continuum material ~nodels 
the isothermal elastic/plastic model is the only continuum 

some sense an independent module, each 
rification problems similar to those given in Chapter 8 

e input instructions given in Appendix A 
for the other models. Instructions for adding a cew 

be added in the 

model described h 

The function f in step 7 of Table 4.6 represents a stress-strain relationship. The main 
assumption is that the strain rate is constant from time t,-l to t,. During each conjugate 
gradient iteration the latest values of the kinematic quantities are used to update the 
stress. All material models are written in terms of the unrotated Cauchy stress u aud 
the deformation rate d in the unrotated configuratiou. 

When calculating linear elastic material response, Hooke’s law is used. In a rate 
form, this is written as 

t+ = X(trd)6 t 2@d , (5.1) 
material constants. 

aterial with Combined Hardening 

The elastic/plastic in 1 is based 011 a standard von Mises-type yield condition 
aud uses combined kinematic and isotropic hardening. It behaves elastically if 110 yield 
stress is input. A very thorough description of this model is fouud in the PRONTOSD 
manual [7]. The description is repeated here for completeness. 

S.l.1 Basic Definitions and Assumptions 

Some definitions and assumptions are outlined here. Referriug to Figure 5.1, which 
oric stress space, the backstress (the 

r a. If u is tlie current value of tlie 



Figure 5.1. Yield Surface in Deviatoric Stress Space. 

The magnitude of the deviatoric stress difference R is defined by 

R = 11€11 = d2-T , (5.4) 

The von Mises yield surface is defined as 

(5.5) 

(5.6) 

Since R is the magnitude of the deviatoric stress tensor when o = 0, it follows that 

(5.7) 

The normal to the yield surface can be determined from Equation 5.5 

(5.8) 





Note that, because S is deviatoric, S : b = S : S and 

(5.18) 

Tlien Equation 5.17 can be written as 

R = & = & q P l  (5.19) 

where H' is the slope of t h .  effective stress versus equivaleiit plastic strain (8 vs. Pi). 
This way be derived froiii uniaxial tension test data as shown in Figure 5.2. 

The coiisistency condition (Equation 5.17) and Equation 5.19 result i n  

(5.20) 

The trial elastic stress rate btr is defined by 

(5.21) ,p - C : d  -. 

where C is the fourth-order tensor of clastic coefficients defiiied by Equation 5.13. Com- 
bining the strain rate decoiiiposition defined in Equation 5.9 with Equations 5.20 and 5.21 
yields 

€ 

(5.22) 

EE' 

E 4  
H' = - 

Figure 5.2. Conversion of Data From a Uniaxial Tension Test to Equivale~~t Plastic 
Strain Versus von M i m  Stress. 
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F Since Q is deviatoric, C : Q = 2pQ and Q : C : Q = 2p. Then using the normality 
condition (Equation 5.10), the definition of equivalent plastic strain (Eauation 5.1 1). and 

(5.23) 

a d  since Q is deviatoric (Q : Citr = 2pQ : d), 7 is determined from Equation 5.23 as 

The current iiorinal to the yield surface Q and the total strain rate d are known 
quantities. Hence, from Equation 5.24, 7 can be deterinixied and then used in Equa- 
tion 5.10 to calculate the plastic part of the strain rate. With the additive strain rate 
decomposition and the elastic stress rate of Equations 5.9 and 8.13, this completes the 
definition of the rate equations. 

The means of integrating the rate equations, subject to the constraint that tlie stress 
must remain on the yield surface, still remains to be explained. How that is accoiiiplished 
will be shown in Section 5.1.5. 

5.1.3 Kinematic Hardening 

For kinematic hardening, the von Mises yield condition is written in terms of the 
stress difference t: 

(5.25) 

It is important to remember that both and the back stress Q are deviatoric tensors. 
The consistency condition for kinematic hardening is written as 

(5.26) 

because the size of the yield surface does not grow with kinematic hardening ( k  = 0). 
Using the chain rule on Equation 5.26, 

and 

- : & o  8.f (5.27) 
8 

- - = l l R l l ~ = ~ ~ .  af af (Ti.%) at 
Coiiibiriiiin Eauations 5.27 and 5.28 and assuiniii~ that R # 0, 

Q:i=O I (5.29) - -  
or 

Q : ( S - & ) = O  . (5.30) 
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A geometric interpretation of Equation 5.30 is shown in Figure 5.3 where it can be seen 
that the backstress moves in a dimtion parallel to the noriiial to the yield surface. 

The back stress rate u iiiust now be defined. Recall that for the isotropic hardening 
case (Equation 5.20), 

Q : b = = . (5.31) 

The kinematic hardening condition assuines that 

ti = did*’ = &yQ , (5.32) 

where 4 is a material paranieter. If 4 is chosen to be $HI, Equations 5.32 aud 5.30 
give a result identical to the isotropic hardening case (Equation 5.31). Hence, either 
Equation 5.31 or 5.32 gives us a scalar condition on b. Note that both of these are 
assuinptions and must be shown to be reasonable. Experience with material models 
based on these assuniptions has shown that, in fact, they are reasonable representations 
of material behavior. 

Using Equation 5.32, Equation 5.9 (the strain rate decomposition), and Equa- 
tion 5.13 (the elastic stress rate) in Equation 5.30 (the consistency condition for kinematic 
hardening) gives 

Q : (P - C : dp’) = Q : $H‘rQ (5.33) 

Figure 5.3. Geometric Interpretatioii of the Consistency Condition for Kinematic 
Hardening. 



I 
After using the normality condition (dg = rQ), we uote that h u s e  Q is deviatoric, 
C : Q = 2pQ. Solving Equation 5.33 for 7 then givm 

1 
7 =  Q:d 

(1 + f )  
which is the same result as was obtained for the isotropic harden..lg case. 

5.1.4 Combined Isotropic and Kinematic Hardening 

For the combined hardening case we define a scalar parameter {I, ranging from 0 to 
1, which determines the relative amount of each type of hardening. Figure 5.4 illustrates 
the uniaxial response to reversed loading wl~icli results from different choices of B. Wllell 
/3 = 0, only kinematic hardening occurs and when /3 = 1, only isotropic liardeiiitig occurs. 

The results derived for the independent hardening cases are iiiultipled by the ap- 
propriate fraction for each type of hardening. Equations 5.19 and 5.32 are rewritten 
as 

R =  $H'@@ (5.35) 

and 
dr = 2 H'd*'( 1 - p) = 'HH'~Q( 1 - p) . (5.36) 3 5 

€ 

Figure 6.4. Effect of the Hardening Parameter {I on IJiiiaxial bponsc?. 



or 

As before, the cousisteiicy condition is 

Q : i = R  (5  .:3 7) 

(5.38) 

Recall, as before, that Q : S = Q : (ktr - y C  : Q), using the elastic stress rate, the additive 
strain rate decomposition, and the normality condition. Together with Equations 5.36 
and 5.1 1, tlis transforills Equation 5.38 into 

Q : b t r - y Q : C : Q - i H ' y ( 1 - / 9 ) Q : Q = & ' / 9 J m  . (5.39) 

Solving for y, 

Q : d  1 
(1 + f )  Y =  (5.40) 

which is the same result as was obtaiiied for each of the independent cases. 

The following is a suniiiiary of the goveriiiiig equations for the coiiibiiied theory: 

(5.41) 

(5.42) 

(5.43) 

(5.44) 

Q : d  (5.45) 1 
(1 + $1 7 =  

(5.46) 
a f p u  - -  

Ilaf/aull - R Q =  

5.1.5 Numerical Implementation 

The finite element algorithm requires an incremental form of Equations 5.41 through 
5.46. Additionally, an algorithm must be used that integrates the iiicreiiieiital equations 
subject to the constraint that the stress remains on the yield surface. 

The iiicreiiieiital analogs of Equations 5.41 through 5.43 are 

@?,+I = @::+I - ~ATQ (5.47) 

and 
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(5.48) 

(5.49) 



where AT represents the product of the time increment and the equivalent plastic strain 
rate (A? = ?At). The subscripts n and t~ + 1 refer to the beginning and end of a, time 
step, respectively. 

An iiicreniental analog is needed for the rate forms of the consistency condition given 
by Equations 5.14, 5.26, and 5.38. At the elid of the time step, the stress state must be 
oti the yield surface. Hence, the incremental consistency condition is 

cr?L+l + &+IQ = %+I - (5.50) 

Equation 5.50 is depicted graphically in Figure 5.5. 

Substituting the definitions given by Equations 5.47 through 5.49 into the consis- 
tency c,ondition of Equation 5.50, 

[a,, + (1 - /j)$H’A?Q] + [&a + $PH‘A7] Q = S::+t;, - +AyQ a (5.51) 

Taking the tensor product of both sides of Equation 5.51 with Q and solving for AT, 

(5.52) 

It follows from Equation 5.52 that the plastic strain increment is proportional to the 
magnitude of the excursion of the elastic trial stress past the yield surface (see Figure 5.6). 

Figure 5.5. Geometric Interpretation of the Incremental Forin of the Consistency 
Condition for Combined Hardening. 
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Figure 5.6. Geometric Interpretation of the Radial Return Correction. 

Using the result of Equation 5.52 in Equations 5.47 through 5.49 completes the 
algorithm. In addition, 

Adp’ = A7Q (5.53) 

aiid 
A#’= f iA7  . (5.54) 

Using Equation 5.52 in Equation 5.47 shows that the final stress is calculated by 
returning the elastic trial stress radially to the yield surface at the end of the time step 
(hence t.he name Radial Return Method). Estimates of the accuracy of this method 
and other methods for similarly integrating the rate equations are available in Krieg aiid 
Krieg [28] and Schreyer, et al. [29]. Note that the radial return correction (the last term 
in Equation 5.47) is purely deviatoric. 

5.1.6 Secant Modulus 

A secant modulus is needed to make the conjugate gradient solution algoritl~m more 
efficient. To derive the secant indulus, Equation 5.21 is written as 

= u,, + C : dAt c:+1 (5.55) 



for calculating the trial stress state with the elastic modulus C. Next, Equation 5.47 is 

(5.56) 

written as 

where 
@n+l = &+l - 4,;l 

a = b ( l -  ) . &z5 
and 

1 b =  
(1 + f ,  

By using the operator D defined by 

-1/3 -1/3 0 0 0 
-1/3 +2/3 -1/3 0 0 0 
-1/3 -1/3 +2/3 0 0 0 

0 0 0 1 0 0  
0 0 0 1 0  
0 0 0 0 1  

(5.57) 

(5.58) 

, (5.59) 

Equation 5.55 can be rewitten as 

t;Ll = ( , + D : C : d A t  (5.60) 

Now Equations 5.55, 5.56, and 5.60 are coiiibined to eliminate all trial values and obtain 

(5.61) 

:(tf+l)-1'2 in Equation 5.57 is ap- 

b,,+1 - u,, = (I - aD) : C : dht - e,, . 
With the use of Equation 5.60, the expression 
proximated with a two-term expansion as 

Substituting Equation 5.62 into Equation 5.61 results in 

Seeking a secant modulus C' such that 

an+1 - u,, = C' : dAt . (5.64) 

we drop the last term in buation 5.63 and approximate C' by replacing wit11 



5.2 Elastic Truss Material 

The iiicreiiiental stress in ail elastic truss is computed by multiplying the strain 
iiicreiiieilt el (Equation 4.44) by Young’s modulus. The new stress, then, is given by 

G+I = a,, + Eel . (5.66) 



6. Contact Surfaces 

Many structures consist of two or more parts that are in contact atid slide wit11 
respect to one another. In the setting of tlie CC; metliod, a sliding algoritli~i~ can easily 
be incorporated usiiig the master-slave concept. When interference between two surfaces 
is detected, the nodes on tlie slave surface are constrained to move on the master surface. 
Friction can be used to coilstrain differential motion of the two surfaces in tlle direction 
tangent to the master surface. Tlie method is also coiiveniently used to fix two surfaces 
together. Tlie master-slave concept is also discussed by Stone et. al. [30]. 

As mentioned above, tlie mater-slave algorithm will keep nodes 011 the slave surface 
from penetrating tlie master surface. Thus, if a slave node tiioves past the end of a iiiaster 
surface, tlie desired constraint may not be present. This problem can usually be fixed by 
reversing tlie inaster aiid slave surface designations. Also, in order to obtain the liigliest 
degree of coiistraint, it is best to have the inore coarsely-meshed surface be the master 
surface. 

6.1 Search Algorithm 

Tlie relationship between a slave node and its iiiaster surface is shown in Figure 6.1. 

A I 
Figure 6.1. Master-Slave Relationships for Sliding Interfaces. 



The slave node S has penetrated the master surface element face aid is located at 
a perpendicular distance d from the master surface. A local coordinate system using 
isoparametric coordinates 5 and q is used to describe the iiiaster surface by 

I n  order to find tlie location point M on the iiiaster surface, ( C M ,  qjw) must be found such 
that the vector d is perpendicular to Nc and Nv. To proceed, tlie functions @I and @2 

are defined as follows ("-" represents tlie dot product of two vectors): 

The quantities d,  NC, and N,) are 

(6.2) 
(6.3) 

d = f - x s  

where xs is tile location of the slave node. Approaching the desired point ((M, q ~ )  will 
drive CP1 and to zero. 

Following Benson [31], the calculation of the location of tlie slave node on the inaster 
surface is begun with three iterations of a least-squares projection used to getierate a 
starting guess. 

[ o = O  q o = o  (6.7) 

(6.9) 
(6.10) 

Then a Newton-Raphsou procedure is used with the following equations to solve for CM 
and q ~ .  
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After the first global CG iteration, the procedure is accfibrated by storing (cM,vM) 
for use as ail initial guess for the next CG iteration. Convergence is assumed if ACk aiid 
Aqi, are IMS than 1 x IO? 

To aid in searching for the element face that has the greatest possibility of being tlle 
surface which is penetrated by the slave node, a data base for each master face is u d .  
For each master element face, a list of neighboring ~naster surface faces is stored in an 
array. If the result of the calculation for the slave node location results i n  an absolute 
value of CM or T,IM greater than 1.0001, then the neighbor in the direction indicated by 
the signs of 5~ and VM is used in the next search calculation. An  exaniple is shown in 
Figure 6.2, where the neighboring face array IFACE for inaster face 1 is (2,3,0,0). 

If d is less than a user-specified fraction (stolr) of the master-face length, the nortiial 
component of the slave residual force Rs, is less than the user-specified tensile capacity 
(ftoZr) of the iuterface, and 

- 1.0001 < &f,q&f < 1.0001 , (6.14) 

it is deemed that the slave node has penetrated the master face. 

I 

IFAaql) = ~ O D ]  
Figure 6.2. Example of the Neighboring Face Array. 
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6.2 Kinematic and Force Conditions 

The kinematic and force conditions that apply to a contact surface are very similar 
to those in  a finitae-element assenlbly process. The conditions are applied to both the 
residual force vector Rj and the conjugate gradient vector Pj. 

6.2.1 Force Conditions 

Fixed Interface 

For a fixed interface, all the coinponefits of the slave node residual force vector are 
applied as point loads to the master face at the location ((M,~M). The result is a set of 
forces that are distributed to the nodes associated with the master face by 

where the & are interpolation functions of tlie master face. Then all the residual force 
components at the slave node are set to zero. This action ensures that tlie total force 
remains constant for the problem, and that the norms associated with the CC: method 
are correctly calculated. If the slave node is directly in contact with a master node, 
this process is exactly the saint? as a finite-element assembly process. In addition, all 
slave nodes in contact with a niaster surface are subjected to linear constraint conditions 
defined by their location on the master surface. 

Sliding Interface 

For a sliding interface, simple Coulomb frictioii conditions have been implemented 
i n  the code. The same actions are applied as in the case of a fixed interface with respect 
to the force transfer from tlie slave node to the iiiaster surface. However, the inaxitnuill 
amount of force transferred in the direction tangent to the master surface is liiiiited to 
the value of the friction coefficient times the norriial slave force. The tangent direction 
is calculated by projecting the velocity of the slave uode onto the master surface. 

6.2.2 Kinematic Conditions 

To ensure that the slave node moves properly on the master surface, kinematic 
conditions are applied to the solution process by iiiodification of the slave node CG 
vector before the h e  search is undertaken. Because updates to tlie velocity vector of 
the slave node are linearly dependent upon Rs, any modification to P.9 will be reflected 
in the velocity vector update after the CG line search is performed. 

First, tlie P-vectors at the four master-surface nodes are interpolated to the location 
of the slave node to define PM, the motion of the master surface. JJM is then rotated to 
tlie (12,  C, '7) coordinate system. A k for the slave node is then cotistructecl as follows. 



(6.16) 

where PM, is the component of PM iu the surface normal directioa. The subtraxtiou 
of 0.2d/aj will result in slowly pushing the slave node back to the master surface every 
CG iteration. In practice, a factor of one is used in place of a, for the following reasons. 
First, aj is not known until after the line search is perforin&. Secoud, aj is usually ends 
up close to one due to the choice of the CG preconditioning matrix M. Third, the factor 
0.2 is somewhat arbitrary anyway. 

If a fixed interface is specified, then the trausverse co~iipo~~ents of B are 

B( = Ph.f( 

ki = PMq 

where P M ~  and P M ~  are components of PM in the 5- and g-directions, respectively. Oth- 
erwise, for a sliding interface, the slave node retaiiis its original transverse components: 

4 = CS( 
k, = ps,, 

(6.17) 

(6.18) 

After 
for the origiiial slave uode CG vector. 

is constructed, it is rotated back to the global coordinate system and substituted 

I 

6.3 Diagonal Assembly 

For all of the slidiug cotiditious, the preconditioning iiiatrix (whicli is sitiiply the 
diagonal of the linear stiffness matrix) must be asseiiibled correctly to account for the 
fact that two surfaces are in contact. The diagonal term associated with the slave uode 
is distributed to the master-face uodes usiug the interpolatiou fuiictions &: 

The distributed slave values are then added to the diagoual values for the illaster nodes. 
Agaiti, as with the residual force assembly, this actiou eusures that the generalized CC: 
vector 2; is properly calculated. 

n 





7. Loads and Boundary Conditions 

JAC3D supports several types of loads and boundary conditions. Displacements, 
pressures, concentrated forces, and body forces ixiay be prescribed. This chapter describes 
how tliese are iixipleixie~ited in the program. 

7.1 Kinematic Boundary Conditions 

The kinematic boundary coiiditioiis described below are aN accomplished by altering 
the residual vector during the C X  iterative process at the nodal points. All of the 
kinematic boundary conditions are applied to nodal point sets. 

7.1.1 Zero-Displacement Constraints 

A zero-displacement constraint is accomplished by settiiig the appropriate compo- 
nent of residual force at each selected node to zero during the CG iterative process. This 
will kinetnatically coustraiii the problem because the update to the velocity vector us- 
ing Equatioiis 3.11 and 3.13 is linearly dependent upon Rj. The starting value for tlie 
appropriate displaceinent component must also be initialized to zero. Zero-displaceinent 
constraints may be specified in aiiy of the coordinate directions, or iiormal to any plane 
parallel to the z-axis. 

7.1.2 Nonzero-Displacement Constraints 

A nonzero-displaceiiieiit coiistraiiit is specified by initializiiig the compoi~ent of ve- 
locity with the change i ~ i  displacement needed to satisfy tlie specification. The. starting 
value for the appropriate displacement component must also be initialized to tlie valiie 
specified for the end of the time step. Then setting to zero the same compoiient of the 
residual force vector to zero for all c.otijugate gradient iterations will ensure that the ini- 
tial values will not change with each conjugate gradient iteration. This action will resiilt 
in ti!" = 4;. Nonzero-displacemett constraints may be specified in aiiy of the coordinate 
directions. 

7.1.3 General Skewed-Displacement Constraints 

Displacement coiistraints in  an arbitrary direction are not explicitly progranln~ed 
in JACSD. However, this type of coiistrair~t is easily imposed with the use of a sliding 
interface. First, elenieiits are defined that describe the surface 011 which the b ~ ~ d y  will 
slide. The surface nodes of these eleineiits are the11 given zero- or noiizero-displac~e~~ie~it~ 



coiistraints to reflect the desired rigid body inotioii required of tlie surface. Tlie niaster 
element block must be given material properties, even thougli it will behave as a rigid 
body. Tlie surface of the body to be constrained is defined as tlie slave side of a sliding 
interface, while the rigid surface is defined to be its inaster side as described in Chapter 6. 

7.2 *action Boundary Conditions and Distributed Loads 

The boundary conditions described here apply external forces to selected nodes. The 
pressure boundary condition deals with element side sets, while the nodal force boundary 
condition applies to nodal point sets. Element side sets and nodal point sets are discussed 
in the EXODUS niaiiual [19]. Body forces (distributed loads) are applied to each node 
in  proportion to the tilass of the material that surrounds it. 

7.2.1 Pressure 

The set of consistent nodal point forces arising from pressures distributed over an 
eleiiient side are defined by the last integral in Equation 3.6 by 

( 7 4  

where the range of the lowercase subscripts (coordinate directions) is 3, while the range 
of uppercase subscripts (surface nodes) is 4. Since tlie virtual velocities are arbitrary, 
they may be eliminated to yield 

jil = - J 4,pni c l ~  . (7.2) S 

The most general pressure distribution allowed is a mapping fron~ nodal point pres- 
sure values via the. isoparametric shape functions. The resulting expression for the coli- 
sisteiit nodal forces is 

f i l =  -pJ  J, ~ I Q J J ? ~ ~  d~ . (7.3) 
For the surface of the eight-node uniform stress element used in JACSD, 41 is give11 l)y 

and nirti = 1. Figure 7.1 shows gmnietric definitions of a pressure loading. 
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Integrating yields 

The above expression may be evaluated to yield the following formula for calculating 
the nodal forces: 

where the indices { i , j ,  k} form a negative permutation. Note that a positive pressure 
gives forces directed inward. 

The nodal values for the pressure are calculated using tile user-supplied scale factor 
and time liistory function. The values are recalculated every CC: iteration. 

7.2.2 Nodal Forces 

Nodal point external forces are simply applied by calculating the magnitude of the 
force determined by the user-supplied scale factor and a time history function. The time 
history function is evaluated at the beginning of the time step. 

7.2.3 Gravity or Body Forces 

Gravity or body forces are computed with the evaluation of the second integral in  
Equation 3.6. This is done as follows: 

pb;Sir; dV = p b j l ~ 6 , J & )  . 

where V,  is the element volume and S,J is the Kroneker delta. 
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Body forces are input by the use of a specified time history function for each coin- 
ponent. For example, a gravity load or body force in the z-direction would only use the 
Z GRAVITY FUNCTION option. General body forces that vary with position and tiiiir! 
may be input froin a file using the DISTRIBUTED LOADS option. 
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8. Verification and Sample Problems 

Sample problems are included for code verification aiid to acquaint the user wit11 
tlie use of the JACSD program. Tlie first section gives problems intended to verify the 
general coding of JAC3D. The second section presents verification studies specific to the 
isothermal elastic/plastic material model. 

8.1 Elastic Problems for Verification of Continuum and Truss 
Elements 

Several elastic verification probleiiis are presented. These iiiclude the large-displace- 
limit analysis of a thin beam with and without truss eieiiients, the rotation of a unit 
cube, and the pressurizatioti of the iaternal surface of a sphere. 

8.1.1 Cantilever Beam 

The large deformation of an elastic caiitilever beam is iiicluded for comparison with 
the aiialytical solution as formulated by Holden [:3’2]. The beam problem is cliallengirig 
for the CC method, which has a great deal of difficulty finding a solution. Tlie bea~n has 
a length-to-thickness ratio of 30 and, to simulate plane stress conditions, Poissoii’s ratio 
is set equal to zero. Gravity and iiortiial pressure loading coiiditioiis are presentecl. 

First, tlie beam is loaded with gravity, which keeps the direction of load constant 
throughont the analysis. Followiiig the notation and development of Holden, tlie quatioil 
for tlie slope of the beam is 

8 6  - = -ka cos e , 
a32 

(8.1) 

where 0 is the angle between tlie beam neutral axis and the z-axis, .S = s / L  is the 
rioriiialized arc length along the beam neutral axis, k = wL3//EI is a nondimc?nsionaI 
loading parameter, L is the length of tlie beam, w is tlie loading intensity (load per unit 
length), E is Young’s modulus, aiid I is the beam’s iiioineiit of inertia. This equation 
describes the finite deflection of uniform beams using the Euler-Beriiouili law of betiding 
subject to vertical (gravity) loading. Bouiidary conditions for a can tilever beam are 

- 0 at = 0 (free end) 

6 = 0 at a = 1 (fixed end) 

at? 
d.s 
-- (8.2) 

(8 .3)  

The normalized horizontal and vertical deflectious of the frre end of the beam are t l l m  
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given by 
1 

h p  = cosens (8.4) 

6 / ~  = siii8n3, (8.5) 
1 

aiid 

respectively. Equation 8.1 was solved using a Runge-Kutta procedure, the integrations 
for deflections were computed using adaptive quadrature, and tlie results checked by 
coinparison to Holden's published solution. 

Tlie finite element model, showti in Figure 8.1, has thirty elements along its length, 
four through tlie beiidiiig direction, and one transverse to the bending. The iioiiliiiear 
response was calculated for the gravity-loaded case and is coinpared to the beam-theory 
solution in Figure 8.2. The coinparisoii for this case is very good, although because 
of iiumerical difficulty the JACQD solution terininated at k = 17. In Figure 8.1 the 
deforined shape of the niesh for loads corresponding to k = 5.5 and k = 17 is shown in 
comparison to the undeformed mesh. 

Convergence of the solution for the Leani problem is very slow. First, the spread of 
eigenvalues in the problein is large, aiid any indirect interative solutioii teclinique with a 
diagional conditioning matix will have difficulty. If the problem is ill-conditioned in the 
linear approximation, as in  this c a s ,  then adding the nonlinearity of large deformation 
(Le., taking into account tlie rotation of the beam) compounds the difficulty. To lower 
the impact of the nonlinearities, the calculatioii is begun hy first solviiig the initial load 
atep assuiiiiiig linear geometry. Then, using the h e a r  results as a starting vector, the 
geometric-nonliiiear effects are included atid the first step is recalculated (TRIAL LINEAR). 
The starting displaceineiit increment for each of the followiug time steps is taken to be the 
increniental displaceinerit calculated in the previous step (TRIAL VELOCITY FUNCTION). 
For the gravity-loaded case, .&e load steps took an average of 580  ionl linear ititerations 
each. Load incrernents of k = 0.0648 were used, witL a convergence tolerance of 0.03 
on the residual force iiorili of Equation 3.16. To get the correct beiidiiig response, the 
default value of the HOURGLASS PARAMETER must be used. 

The problem was also analyzed with pressure applied along the top of the heam, so 
that the load reinailled normal to tlie surface throughout the deformation. The beam- 
theory equation for this case is 

a 

with tlie same boundary coiiditions as before. For large load magnitudes, this configu- 
ration causes more severe bending of the beam. The input fila for tlie pressure-loaded 
case is sliown in Figwe 8.3. Once agaiu, the analytic solution is compared to the JAC3D 
calculation in Figure 5.4, and the deformed shape of the beam at several load levels 
is shown in Figure 8.5. In this case, the finite element model is somewhat stiffer tllatl 
Euler-Bernoulli beam theory predicts, particularly at the higher loads. This is probably 
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Figure 8.1. Finite Eletneiit Model for Beam Problem. 
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Figure 8.2. Coomparisou of Displaca~~ia~its for-a Haani with Gravity Loading. 
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TITLE 

TRIAL LINEAR 
MAXIMUM ITERATIONS, 3000 
ITERATION PRINT, 10 
RESIDUAL TOLERANCE, 0.03 
MAXIHUH TOLERANCE, 0.06 
CGRESET LIHITS, 790, 80 
TRIAL VELOCITY FUNCTION, 2 

FUNCTION I $ PRESSURE LOADING 

ELASTIC B E M  WITH PRESSURE LOADING 

SOLUTION FUNCTION, 3 

0.0, 0.0 
2.0, 2.0 

END 
FUNCTION 2 $ TRIAL VELOCITY 
0.0, 1.0 
2.0, 1.0 

END 
FUNCTION 3 $ SOLUTION 
0.0, 310 
1.55 

END 
PRESSURE, 5, 1, 400. 
X DISPLACEMENT, I 
Y DISPLACEMENT, 1 
Z DISPLACEMENT, 1 
2 DISPLACEMENT, 3 
Z DISPLACEMENT, 4 
MATERIAL, 1 

ISOTHERMAL ELASTIC PLASTIC 
YOUNGS MODULUS, 1E+7 

END 
EXIT 

Figure 8.3. Iiiyut for the Pressure-Loaded Beam Problem. 
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Figure 8.4. Eiid Displacemeut for a Beam with IJuiforin Pressure Loading. 
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Figure 8.5. Defonned Shape of the Beam under Pressure Loading. 
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due to the fact that when the beam starts bending back on itself, the radius of curva- 
ture is 110 longer large compared to the thickness of the beam. JAC3D had a somewhat 
easier time with this load configuration: it ran all the way to completion at L = 20 and 
took an average of 365 nonlinear iterations per load step. As a point of reference, the 
JACSD solution with linear geometry assumptions (LINEAR PROBLEM) is also plotted 
in Figure 8.4. This solution agrees with the linear beam theory predictioii of S / L  = k/$. 

Truss elements were added along the top and bottom row of elements to increase the 
bending stiffness by a factor of two. The addition of truss elements produced the same 
results as stiffening the material by a factor of two, thus verifying the coding for the truss 
elements. To further verify the coding of the truss and continuum elements, the beam 
was rotated to an arbitrary position in 3-space and the pressure-loading calculation was 
repeated. The results were insensitive to the change in orientation. 

8.1.2 Unit Cube 

A unit cube as sliown in Figure 8.6 is first loaded with uniaxial pressure and then 
rotated about one corner. The input to the unit cube problem is shown in Figure 8.7. The 
INITIAL EQUILIBRIUM capability is exercised to obtain the uniaxial stress state before 
rotation begins. CGRESET LIMITS are chosen so as to help the single-element problem 
converge on initial loading. A rotation of 90" is then accomplished in 10 steps. The stress 

pressure 

\ 

/ 
/ 

/ 
/ 

/ 

If rotation 

Y 

Figure 8.6. Description of Unit Cube Rotation Problem. 
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Figure 8.8. Stress Results for Unit Cube Rotation Problem. 

state as a function of rotation is shown in Figure 8.8. The rotation algorithm is very 
accurate. In fact, for this problem it is essentially exact. 

8.1.3 Internally-Pressurized Sphere 

A spherical geometry was chosen to demonstrate the performance of the nonlinear 
CG method and to verify the coding of JAC3D. With a spherical geometry, relatively 
simple loading conditions can be used to exercise a significcnt portion of the code. For 
example, all the components of displacement, stress, strain, and material state variables 
are used. The sphere is layered so that multiple material models can be utilized. Inter- 
face conditions are applied to verify the contact surface algorithm for fixed interfaces. 
Loading and response is one-dimensional (radial), so that a small sector of the sphere 
may be analyzed to obtain a high-resolution solution. The model can then exercise 
skew-displacement boundary conditions and the sliding interface algorithm. 

An outside-to-inside radius ratio of two was chosen for the analyses. Two different 
finite element meshes were used, which will be referred to as the "octant" and "sector" 
models, respectively. The models, which both use 40 elements though the thickness, are 
shown in Figures 8.9 and 8.10. The octant model has four material layers joined by 
fixed interfaces, and symmetry boundary conditions are applied on the three orthogonal 
coordinate planes. The mesh has 1,840 elements and 2,596 nodes. The sector model 



Figure 8.9. Octant Finite Element Model for Sphere Problem. 

Figure 8.10. Sector Finite Element Model for Sphere Problem. 

I 



covers a 5" sector of the sphere with a single material block. The first two sides are aligned 
with coordinate planes aiid have displacement constraind in the y- and z-directions, 
respectively. A third side liaa noriiial displacement constraixied by use of the XYPLANE 
DISPLACEMENT option. The fourth side is coiistraiiied to slide along a rigid surface 
placed above the sector. The sector mesh has 168 eleinents and 396 nodes. 

There is a simple analytic solution to this problem. The elastic solution given by 
Melidelson (33, Equation 8.3.1 11 is 

where E and p are the elastic constaiits, r is the radial position, c1 atid b are inside 
and outside radii, respectively, and y is the applied internal pressure. To obtain a 
Rt?ometrically-uonliuear solution, this equation was applied iteratively, with the radial 
positioiis updated each iteration to reflect tlie displaceineiits calculated in the previous 
iteration. 

The radial displacement calculated by JAC3D is compared to the analytic solution 
in Figure 8.1 1. Using a Young's modulus of 1.0 x 10' aiid a Poisson's ratio of 0.3 with an 
applied pressure of 10,000 resulted in an internal deformation of 0.040034 using the sector 
model, which compares t' Avorably to tlie analytical solution of 0.040049. .JACSD required 

.035 1 / 
c 

Analytic Solution . .. 

- JAC3D Sector Model 

I I t "c4, - 
L-i_i__-L---_-. - :'u .0151 ' ' ' ' I ' ' ' I ' 

50 60 70 80 90 i 00 

Radius 
Figure 8.11. Radial Displacement for the Pressurized Linear Elastic Sphere Problei11. 
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 io^ 1 $ SOLUTION 

FUNCTIOW = 2 $ 

$ Rigid surface for sliding interface 

DISPLACEU&MT = 4, 95.0 
SURFACE = ll,lO, 0 . 0 ,  1.E-4 

, Pressurized S p k  Probbm. 



8.2 Isothermal Elastic/Phstic VeriBcation Prob 

8.2.1 Rotating Ring 

The rotating ring problem, shown in Figure 8.13, is included to verify the large- 
rotation capability for elastic/plastic material reponse. The ring is given a slow in-plane 
rotation and internally pressurized beyond the yield stress of the material. It is positioned 
in the xy-plane with its center at the origin. The initial inside and outside radii are 0.95 
and 1.05, respectively. The out-of-plane thickness is 0.1, and plane strain conditions are 
imposed by restricting displacements to the xy-plane. The ring material has a Young's 
modulus of 10.3 x lo6, a Poisson's ratio of 5, a yield stress of 4.15 x lo', a hardening 
modulus of 5.17 x lo', and a hardening parameter /3 of 1.0. During the pressure loading 
sequence the ring was rotated by applying opposing horizontal displacements to a pair 
of nodal points on the top and bottom of the ring, respectively, and opposing vertical 
displacements to nodes on the left and right sides, respectively. Figure 8.13 shows the 
ring before and after loading, with Element 1 shaded in both cases for reference. The 
input for the ring problem is shown in Figure 8.14. 

Figure 8.18. Ckometry for the Rotating Ring Problem. 
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3uLus 10.3+6 

3OLUTION F"CTI0N 5 
OUTPUT FUNCTION 4 

FUNCTION 1 $ LOADING 
0.0 0.0 
1.0 4000.0 
2.0 5000.0 
2 . 5  6000.0 
10.0 10000.0 
20.0 15000.0 

END 
FUNCTION 2 $ DISPLACEMENT ROTATION FUNCTION 

0 . 0  0.0 
20.0 1.055 

END 
FUNCTION 3 $ TRIAL DISPLACEMENT 

0 . 0  0 . 0  
4.0 0.0  
4.25 1.0 

I 20.0 1.0 

FUNCTION 4 $ OUTPUT 
0.0 9.0 
18.0 

END 
FUNCTION 5 $ SOLUTION FUNCTION 
0.0 1.0 
1.0 1.0 
2.0 8.0 
2.5 30.0 
10.0 40.0 
18.0 

END 
X DISPLACEMENT 4 2 1 
Y DISPLACEMENT 3 2 -1 

2 2 -1 
1 2 1  

5 
6 
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Figure 8.15. Effective Stress Response of the Rotating Ring. 

The effective stretls aa a function of time is depicted in Finure 8.15. Note that the 

had the ring not been rotated. 

8.2.2 Hollm Sphere 

Elastic/plastic analyses of the hollow sphere discussed in Section 8.1.3 were per- 
formed to verify the isothermal elastic/plastic material model. A yield stress of av = 
10,OOO waa used for all the analyses. 

The first problem considers the material to be perfectly plastic. When euough 
pressure is applied, yielding begins on the insi . As the pressure is increased 
further, the plastic zone expands radially until the entire sphere has yielded. The radius 



interface radius is computed, the dimensionless dective stress S Ius - u,(/uy in the 
outer elastic region reduces to simply 8 / r 3 .  By definition the dimensionless afective 
stress is unity in the plastic region. 

For the finite element solution to this problem, internal pressure was applied first 
to the octant n d e l  and the material was considered to be perfectly plastic. Sufficiaiit 
pressure was applied 011 the first load step to initiate yielding on the inside surface (letting 
c = a in Equation 8.8). The pressure was then increased in 20 equal load steps to the 
point that the entire sphere should have yielded (c = b). The effective stress aloug a 
radial line from an element on the inside surface to an element on the outside surface 
for load steps 1, 6, 11, 16, and 21 are shown in Figure 8.16, where it is compared to the 
aualytic solution. A convergence tolerance of 0.001 was specified in JACSD. Note that for 
a perfectly plastic material, there is no equilibrium solution wheii interiial pressure causes 
the entire sphere to yield. (The balloon pops!) Thus, on the last load step .JACSD did 
not coiiverge to the specified equilibrium tolerance, although the stresses resulting from 
the iioii-equilibrium final state indicate that the sphere had indeed completely yielded. 
The first twenty load steps required a total of 4,118 iterations for the octant model. 

The aualysis was repeated using the sector model, shown with x's in Figure 8.16. 
This idealizatiou produced slightly higher effective stresses, particularly at the later bad 
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Figure 8.16. Effective Stress Distribution for the Pressurized 
Elastic/Perfmtly-Plastic Sphere Problem. 



Both JACSD analyses predicted higher stresses than the analytic solution, inore notice- 
able at the higher pressures. This is probably due to the fact that the analytic solution 
assuines linear geometry, whereas the J ACSD analyses were geometrically nonlinear. 

The next problem includes linear strain hardening in the material plasticity. The 
radius of the elastic/plastic interface for this case is computed from [ 3 3 ,  Equation 8.6.201 

d 

im(i - p ) ( ~  - 1/,93)p: + 2(1 - tlt)111p, + i(i - m)(i - i/p;) P =  (8.9) 
1 - 178 + 2tn( I - p)  

where tn  is the ratio of the hardening inodulus to Young’s modulus, p is Poisson’s ratio, 
and ,9 = b/a. Note that for 778 = 0, this reduces to the perfectly-plastic case. The 
effective stress in the elastic region is the same as before, whereas in the plastic region 
[33, Equation 8.6.t22I1 

(8.10) 
1 - T7l + 2773( 1 - p)C3/T’” S =  1 -m+2m(l  - p )  - 

This problem was analyzed using the octant model with a strain-hardening modulus 
of 1.0 x lo6 (nt = 0.1). Because of the strain-hardening, a higher filial pressure was 
required to yield the entire sphere. Moreover, because the material continues to harclen 
with increasing strain, the last load step was stable and converged easily. The results 
are shown in Figure 8.17. For the later l o d  steps the finite element solution predicts 
slightly higher stresses than the analytic solution. Once again this is likely due to the 
geoinetrical nonlinearity accounted for in the JAC3D solution. For comparison, the first 
twenty load steps in this problem required a total of 3,914 iterations. 

To verify the use of thermal loads in the JAC3D program, the sphere was analyzed 
using a sequence of steady-state thermal loads obtained by raising the temperature of the 
inside surface while the outside surface temperature was held at zero. The analytic solu- 
tion for this problm is taken from Section 5.4 of Referelice [34], with iiotation changed 
slightly for compatibility with the foregoing discussion. Denoting the inside surface tem- 
perature by To and the coefficient of thermal expansion by a, a dimeiisionless thermal 
load is defined as 

(8.11) 

Yielding begins at the inlier surface due to hoop coinpression and expands outward. The 
radius c of the initial elastic/plastic interface is found by solving 

1 . = a ( : - ; )  [ 1 - c 3 p 3  + l n ( c ~ / u ~ )  
(2 + c/b)( 1 - C / b ) 2  

(8.12) 

Letting a = O.oooO1 and using the previous elastic./perfectly-plastic material properties 
atid geometry, initial yield at c = a occurs at TO = 98.0’. Since there is 110 strain 

‘Tbe expression for Se in the referenced equation ie missing the term + 
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Figure 8.17. Effectrive Stress Distribution for the Pressurized Elastic/Plastic 

Strain-Hardeuiug Sphere Problem. 

hardening, the dimensionless effective stress S in the plastic region remains at unity. In 
the elastic region, S is given by 

where 

(8.13) 

(8.14) 

When the plastic boundary has advanced to a radius cl, a second plastic zone is 
initiated at the outer surface due to hoop tension. The radius c1 is foiiiid by solviiig 

~1 2b 2 

R 3c, 
(8.15) 

For the present problem, q / n  has a value of 1.197 aid occurs at an inner surface temper- 
ature (from Equatiou 8.12) of 264.8". Above this temperature, the second plastic zone 
spreads iuward from the outer surface while the inlier plastic zone coutinues to spread 
outward. Whau there are two separate plastic zoiies, F4uatioii 8.12 110 longer holds. 

d l  
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associate sets of nodes or element sides with 

GENESIS unit 9 file. 

descriptive words. The the description followed by data. The order of the 
input is not important e: 

follows on the li cates that the curreut iuyut 

oblem. If source is blank, then nfunct is iguored 

y force. Loads in force per uuit mass 
d is specifid. Distributed load wcorda 



n might help ia accelerating solution 
ons. Two iteration passes will be attempted 011 the 
ses linear geometry assumptions and the second pass 

try solution using the linear solution as an initial guess. 
The default is that no trial linear solution will be calculated for the solution of the 
first load step. 

INITIAL EQUILIBRIUM dime 
This specifies that JAC calculate an initia 
step. Bime is a dummy time increment t 
rial models. Two equilibrium passes are 
the displacements are zeroed out and th 
Two passes are used 
rium in a deformed c 
arerezeroed T alculate initial equilibrium before taking the 

the problem at the first time specified by the 
solution control function is executed. Restart data is expected on unit 32. All the 
input necessary to set up the p st be included, i.e., GENESIS data should 
be on unit 9 and control infor d be on unit 5. The restart file, unit 32, 
only contains the necessary infor to establish initial mechanics conditions for 
the solution, and is written in US file format. The default is not a restart 
problem. 

A.2 Output Options 

echoed on the ASCII output 



WRITE RESTART FUNCTION nfitnct 
Nfitnct specifies the function that will be used for determining the times when data 
is written to unit 30 for 1 se in restarting the yroble111. The function valuc(i) 
at time(i) is the number 11 be writtell between time(i) alld 
time(i + 1). If this command is art &a will be written. 

11 be used for determining solution time incre- 
(i) is the number of times the solution will be 
i + 1). Therefore, 

time(i + 1 )  - time(i) 
v a h  ( i )  

Atimc = 

A SOLUTION FUNCTION command must be input. 

residual force vector divided by the iioriii of the 
convergence toleraiice is I .O x 10'~. 

' to the sanie quautity as tolr. Its default 



of degrees of freedom. 

ed loads, convergence is assumed if the norm 
Otherwise, if either the displacement or resid 
es the load step has converged. If the convergence criteria 
iterations, JAC will first go back to the iterat 
he smallest residual during the load step iterations (see 

the discussion under CGRESET LIMITS below). If the relative size of the corresponding 
residual rj,, is less than tolrmz, then zjmi,, is accepted and JAC will proceed to the next 
load step. If not, zjd, is written to the plot file and the analysis is terminated. 

CGRESET LIMITS itstrt, itrset, tolfuc 
These parameters control logic that 
When the CG iteration is not conve 
selecting as its new guess t 
rimin so far in the current lo 
iterations to wait b 

the smallest residual 
specifies how many 
JAC requires that 
umber of iterations 

third parameter, tolfac, defines how much growth in value of itrset is M)OF 
the residual nor 

TRIAL VELOCITY FUNCTION nfunct 
Nfinct specifies a function which will be used for deterinining a multiplier, which 
when applied to the last incretnental displacement field, will generate an initial guess 
for this load step. The vaZue(i) (i) will be used as the multiplier for all load 
steps between time(i) and time (values are not interpolated). For problems 
where the solution varies smoot many load steps, a trial velocity factor of 1 .O 
can significantly increase the r vergence. On the other hand, for probleiiis 
with several disjoint load steps or t changes in loading direction, a trial velocity 
can hinder convergence. The 

HOURGLASS PARAMETER udue 
subject to hourglass ("zero- 
formulation uses Flanagan's 

ultiplier on the 
1.0 ie suitable; 

g value by an order 
of magnitude or two may give a more accurate answer. 

t 
i 



otherwise the value of the functiou at the end of the load 

is zero.) 

XYPLANE DISPLACEMENT iflag, angle 
This keyword specifies that there be no displminent normal to a plane perpendic- 
ular to the sy-plane of the analysis, and is useful for modeling certaiu symmetry 
conditions. Iflag is a uodeset boundary flag number and angle is the orieutatioii of 
the constraint plane’s uorinal vector, measured counterclockwise from the z-axis in 

X GRAVITY FUNCTION nfunct 
Y GRAVITY FUNCTION nfunct 
Z GRAVITY FUNCTION nfunct 

y forces, the total load is specified by using the value f(t) of the 
n at the end of the load step along with the density, which is specified 
data. Load = density x uokme x f ( t ) ,  with volumt. c.alcu1ate.d by 

PRESSURE iflug, nfunct, pvalue 
For pressure boundary conditions, iflag must correspoud to a sideset flag in the 
GENESIS data base. The magnitude of the applied pressure is determined by mul- 
tiplying the value of the function at the end of the load step by pvahe. The default 
value of puulue is zero. 

USER PRESSURE iflag, pualue 
This input record directs the code to call SUBROUTINE BNDUPR oiice each load step 



SLIDING SURFACE mfig, sflag, coefl dlolr, ftolr, stolr 
FlXEU SURFACE mflag, sflag,, dtolr 

Contact surfaces are specified by associating tlie inaster surface flag mflag and tfre 
slave surface flag sflug to corresponding sideset flags in tlie GENESIS data base. 

Coeflis the coefficient of frictiou. Its default is zero. 

Dtolr is a displacement tolerance such that if the two surfaces are within the tol- 
erance, they are assuiiied to be in coiitact (iii other words, a capture distance). 
Its units are relative to the length of the iiiaster eleiiieiit surface. The default is 
1.0 x IO-’. 

Ftolr is the value of force that iiiust be exceeded for a SLIDING SURFACE to be 
allowed to separate once contact lias been established. The default is 1.0 x lo”’. A 
FIXED SURFACE is never allowed to separate once contact is established. 

Stolr specifies the penetration distance within which to capture a slave node, in units 
of inaster-surface length. It defaults to 0.1. 

A.5 Function Data 

FUNCTION n 
time(l), value(1) 
time(2), value(2) 

time(m), value(m) 
END 

Function data are input as pairs of data, with one pair per record. The data is terminated 
by an END record. Care should be taken, because different input quantities make use of 
function data differently. It is suggested that the functions be numbered consecutively 
from one, since the function number n is used as an index into the function data array. 

A.6 General Material Data 

The following data may be input for all materials. The general material data must be 
accompanied by parameters specific to the material models, which are outlined in tlie 
following section. 

MATERIAL id, aype 
d to ~1 element block ID in the GENESIS data fila. !type 



'rnes applies to all the elements 

omponents computed 

he z-coordinates of all its nodes. 
ted if a constant initial stress is 

One set of the following data must be included with a set of general material data for 
each material. Enough data must be specified to define a real material. All values are 
defaulted to zero. 

Material Type 1: Isothermal Elastic Plastic 

The formulation of this modcl is described in SAND81-0998, ''JA(:--A Two-Dimensional 
Finite Element Computer Program for the Non-Linear Quasistatic Response of Solids 
with the Cw&gate Gradient M&hod," pp. 22-24. 
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. Zero means only kinematic hardening occurs, while 1.0 

each set of material data. 

The formulation of this model is described in SAND81-0998, "JAC:-A Two-Dimensional 
Finite Element Computer Progratn for the Non-Linear Quasistatic RRsponse of Solids 
with the Conjugate Gradient Method," pp. 24-25. 

YOUNGS MODULUS value-1, vulue-2, ... , value-n 

POISSONS RATIO value-1, value-$ ... , value-tk 

e-1, value-2, ... , value-n 
perature-dependent material parameters are giveti at the n 
on the TEMPERATURE input record for this material block. 
to the temperature of the element. If the eletnent tempera- 

ange of temperatures given, values are extrapolated from the 

Ranges from 0.0 to 1.0. Zero meatis only kiiietiiatic liardetling occurs, while 1.0 
iiieaus only isotropic hardening occurs. 

is described in SAND81-0998, "JAC-A Two- 
r the Non-Linear Quasietatic Respotlee 



forward Euler tnethod developed by C. 
documented in a forthcoming SAND report. 

YOUNGS MODULUS vaZu,-l, value-2, ... , values 

POISSONS RATIO value-1, value,?, ... , v a h f  ri 

CREEP CONSTANT value 

STRESS EXPONENT ualur 

THERMAL CONSTANT valur 

END 
An END record terminates each set of material data. 

CREEP CONSTANT, STRESS EXPONENT, CONSTANT (= Q / R )  are 
coustaiit with respect to temperature. If a BLEM is not specified, then 
the material temperature is assumed to b en 011 the TEMPERATURE 
record for this illaterial block, and the first value for YOUNGS MODULUS and POISSONS 
RATIO is used. 

Material Type 4: Isothermal Soil and Crushable Foam 

This model was developed by R. Kreig, SC-DR-72-0883, “A Simple Constitutive De- 
scription for Soils and Chsliable Foams.” The JAC impleme~;tation is described in 
SAND81-0998, “JAC-A Two-Dimeasional Finite Element Coinputer Program for the 
Non-Linear Quasistatic Response of Solids with the Conjugate Gradient Method,” pp. 
27-28. Note that the model now uses effec.tive stress rather than JZ in the foriniilation 
of the deviatoric yield function, followii~g the PRONTO/SANTOS formulation. 

SHEAR MODULUS value 
BULK MODULUS value 

A0 value 
A1 value 
A2 value 

PFRAC value 
PMAX value 

VOLUME STRAIN valw-1, v~lue-2, ... , value-8 



explanatory. (hrrently 

YOUNGS MODULUS E,,, Ew, E,, 

POISSONS RATIO vyx, vZx, vZy 

SHEAR MODULUS GZy, Gu,, GZx 

END 
An END record terminates each set of material data. 

For a transversely isotropic material, 

= G, 

cy, = GZX = Gan 

Ea 
2( 1 + v,) Gxu = 

Material Type 6: Isothermal Elastic Truss 

This model is described in SAND87-1305, " J  
merit Computer Program for the Nonlinear 
Con j ugate-G radien t Met hod." 

YOUNGS MODULUS value 

AREA ualuc 

-A T ~ ~ r e a - D i ~ ~ ~ e ~ l s i o ~ ~ a ]  Firlite Ele- 
Static Rpsponse of Solids wit11 tile 

All the truss eleiiients using this material ID have the saint' area. 

E 
An END re es each set of material data. 

r Law Hardening Elastic Plastic 

. Stone, C:. Wellman, and R. Kreig at Saridia Labs New 
SAND90-0153, "A Vectorized Elastir/Plasticr Power Law 



YIELD STRESS valuc 
The default of zero results in at] elastic material. 

HARDENING CONSTANT enluc 

HARDENING EXPONENT valuc 

LUDERS STRAIN value 

Material Type 10: Sandia Damage Model 

YOUNGS MODULUS value-1, value-2, ... , value-n 

POISSONS RATIO value-1, value-2, ... , value-tt 

I 
If a THERMAL PROBLEM is tiot specified, tlieii the inaterial tenlperature is assll~lled 
to be the vdue-1 given on the TEMPERATURE record for this illaterial block, atld 
the first value for YOUNGS MODULUS and POISSONS RATIO is llsed. 



An END record terminates each set of inaterial data. 



Appendix B 
JACSD v6.1 Output Description 

B.l General Printed Output 

Printed output begins by echoing the input data from unit 5. The GENESIS input 
data is also echoed if the GENESIS OUTPUT iiiput record has bee11 specified. A large 
aiiiouiit of data should be expected wlien priiitillg the GENESIS data. The input section 
elids with sullit1lary of the dyiiainic iiieniory allocatiou for the problem. 

Each load step produces at least oiie page of printed output. The first page is printed 
even if the user Iias not requested output for the time step. 

SOLUTION TIME = time 

OUTPUT FOR LOAD INCREMENT n 

SUM OF X REACTIONS ------------------- 
SUM OF y REACTIONS ------------------- 
SUM OF 2 REACTIONS ------------------- 
NORM OF APPLIED FORCES --------------- 
RESIDUAL FORCE TOLERANCE ------------- 
INCREMENTAL DISPLACEMENT N O M  -----e-- 

INCREMENTAL DISPLACEMENT TOLERANCE --- 
CPU TIME FOR LOAD STEP --------------- 
NUMBER OF ITERATIONS ON FIRST PASS ---- 
NUMBER OF ITERATIONS ON SECOND PASS --- 
TRIAL VELOCITY FACTOR ----------------- 

RESIDUAL FORCE N O M  ------------------ 

TOTAL CPU TIME ....................... 

rx 
=Y 
r z  
f n  
rn  
rnn 
un 
unn 
ti 
t 2  
npass (1) 
npass(2) 
f actd 

Rx, r y ,  arid rz are the total reactions resriltirig from application of tile loads. They 
caii be compared to the applied loads to obtain a measure of the state of convergeience of 
the solution. Of particular interest are the reactioiis in  directions wliere the applied load 
is zero. The coiijugate gradient method will geiierally get the reaction in the direction of 
the iioiizero applied load first in the iteration process, aiid tlien reduce the other reactions 
to zero. 



The applied force norm fn and displacement norm un are used to calculate t~ 

(= m/tn) and m, respectively, wliicli are compared to the specified residual toleralre 
tolr and displacement tolerance tolu. The residual force noriii rn is also compared directly 
to the specified maximum residual r c d j  These quantities can be used as a liieasure 
of how close the load step has come in the event the prograin stops before satisfying 
convergence. 

The amount of central processor computer time is given for the currt!lt load step 

The number of iterations that are used for the current load step is printed to give the 
user a measure of how fast the load step has converged. If either the TRIAL LINEAR or 
LINEAR PROBLEM option is used, npass(1) is the number of iterations of mnvergence 
of the trial linear or linear solution. For the TRIAL LINEAR option, npass(2) is the 
nuiiiber of iterations iieeded for the nonlinear solution to the first load step. For a 
nonlinear problem without the TRIAL LINEAR option, npass(1) is the total nuiiiber of 
iterations needed for the load step. 

and the total time used for the job. 

Factd is a multiplier used to scale the velocity vector from the previous load step to 
obtain a trial velocity vector as an initial guess for the current load step. 

Further output is produced at the solution times specified by the OUTPUT FUNC- 
TION. Current coordinates and displacements of each node are listed, with X, Y, aid Z 
denoting the coordinates and DISX, DISY, and DISZ denoting the components of total dis- 
placement. Componeuts of stress in the current deformed configuration carry the labels 
SIGX, SIGY, SIGZ, SIGXY, SIGYZ, and SIGZX. The element temperature is called TEMP. 
Strains are not calculated or output by the program. If a load step does not converge, 
current values of these variables are written to the output file for diagnostic purposes 
before the prograiii exits. 

B.2 Contact Surface Printed Output 

Contact surface data is printed in  the followiiig formal at the times specified by tlw 
OUTPUT FUNCTION. 

INTERFACE NUMBER n 

NUMBER MASTER SLAVE LOCATION ON ELEMENT NORMAL NORMAL 
ELEMENT NODE ZETA ETA DISPLACEMENT FORCE 

The output is ordered first by INTERFACE NUMBER, and then by the NUMBER in the overall 
list of interface slave nodes. 



MASTER ELEMENT is the iiuiiiber iii a list of the total iiuinber of master eleiiieiit 
faces with which the SLAVE NODE is interactiiig. SLAVE NODE lists the node's global iiode 
number. An  interface coiidition of FIXED, SLIDING, or NO CONTACT is indicated beside 
the node number. For a slave iiode to be in contact, tlie values of ZETA aiid ETA iiiust be 
greater than -1.001 and less than +1.001. A slave node which is penetratiiig its master 
elemeiit face will have a NORMAL DISPLACEMENT less tlian the dtoh value specified for tlie 
contact surface. For a slidiiig surface slave node to be in contact with a inaster eleiiieiit 
face, the value of the NORMAL FORCE inust be less than the value of f toh  specified for the 
surface . 

B.3 Interim Iteration Printed Output 

If the ITERATION PRINT coiiiiiiaiid is used, the following output is obtained every 
n iterations. 

LOAD NUMBER OF X Y z FORCE DISPLACEMENT 
STEP ITERATIONS REACTION REACTION REACTION TOLERANCE TOLERANCE 

The quantities listed under the last five headings are the iiiteriiiediate values of rx, ry ,  
rz, rnn, aiid unn, respectively, which are described in Section B.l. 

B.4 Plot Data Output 

A plot output file is written in tlie EXODIJS foriiiat 011 unit 1 1  by 3AC3D for post- 
processing. The following variables are written to the EXOIIIJS file for each solution 
time specified by the PLOT FUNCTION. If a load step does not converge, current values 
of these variables are written to the EXODIJS file for diagnostic purposes before the 
program exits. 

B.4.1 Global Variables 

Name 
RN 
RNN 
UN 
UNN 
FN 
RX 
RY 
RZ 
ITER 

Description 
Residual force iioriii 

111 crciiien t aI di spI aceiiieii t iior in 
Incremental displ acemeiit tolerance 
Applied force norm 
Total reaction force in the 2-direction 
Total reaction force in the y-direction 
Total reaction force in  the direction 
Cumulative total tiuiiiber of iterations 

1 Residual force t.oleraiice ' 

101 



B.4.2 Nodal Variables 

Name Description 
DISPLX Total displacement in tlie 2-direction 
DIEPLY Total displacement in the y-direction 
DISPLZ Total displaceiiieiit in the z-direction 
RESIDX Total residual force iii the z-direction 
RESIDY Total residual force in the y-direction 
RESIDZ Total residual force in the z-direction 

Components of the residual forces-RESIDX, RESIDY, aiid RESIDZ-are tlie values 
of the residuals at the end of the load step. If the load step does not converge, it is 
soiiietiiiies useful to plot the residuals to identify areas of the mesh where convergenc:e is 
difficult . 

B.4.3 Element Variables 

Continuum Element 

I Name I Description I 
SIGXX Stress a,, I 
SIGYY Stress a,, 
SIGZZ Stress a,, 
TAUXY Stress r,, 
TAUYZ Stress T,, 

TAUZX Stress T,, 

EPX 1 
EPX2 Material history variables 

I 

TEMP I Temperature at the center of the eleineiit 

Truss Element 

Name Description 
SIGXX Axial stress 
TEMP Temperature at the ceiiter of the element 

B.4.4 Material History Variable Names 

The values in the history variable arrays depend upon the material models used in 
t-he atialysis. The following is a description of the variables by material type. 



Material Type 1: Isothermal Elastic Plastic 

Name 
EPXl 
EPx2 
EPXS 
EPX4 
EPXS 
EPXG 
EPX7 

Description 
Yield surface ceiiter stress component us= 
Yield surface ceiiter stress conipoiieiit q,,, 
Yield surface ceuter stress cornpolieut a,, 
Yield surface center stress conipo~leut rsar 
Yield surface center stress component T ~ .  

Yield surface ceiiter stress coiiipoue~~t T,, 

Accumulated plastic straiu 

Material Type 2: Temperature Dependent Elastic Plastic 

Name 
EPX 1 
EPX2 
EPX3 
EPX4 
EPXS 
EPXG 
EPX7 

Description 
Yield surface center stress coniponent a,, 
Yield surface center stress component a9y 
Yield surface ceuter stress component a,, 
Yield sudkce ceuter stress coniponeiit rZy 
Yield surface ceuter stress coinpouerit T ~ ,  

Yield surface ceiiter stress conipoueut rZ, 
Yield surfact? radius 

Material Type 3: Temperature Dependent Secondary Creep 

V D e s e r i p t i a n l  
Accuiiiulated creep strain 

Material Type 4: Isothermal Soil and Crushable Foam 1 !Jar Description 

_ _  1 - ' I  teusile fracture will occur 
Maximum previous voluinetric strain ( siitive iu compression) 
Current value of volumetric strain at t 
Curreut value of \olunietric straiu (yositl-ie in conipressio~i) EPX3 

Material Type 5: Orthotropic Elastic 

There are 110 history variables for this material model. 

Material Type 8: Isothermad Elastic Truss 

There are no history variables Rr this material model. 

Material Type 7: Power Law Hardening Elastic Plastic 

I Name I Description 1 
EPXi I Accumulated plastic strain 

1 03 



Q g 
Name 
E P X l  
EPX2 
EPX3 
EPX4 
EPX5 
EPX6 
EPX7 
EPX8 
EPX9 

Description 
Backstress coniponeiit cu,, 
Backstress component ayy 
Backstress cornyolielit azz 
Backs t ress coinpoiieii t azy 
Backstress component 
Backs t ress compo~ien t azs 
Hardeuing scalar k 
Void fraction q5 
Void fraction rate i 



Appendix C 
Adding a New Constitutive Model to JAC3D 

A material model is identified by a narne atid a number. For example, the isothermal 
elastic/plastic model is 11a111ad ISOTHERMAL ELASTIC PLASTIC atid is Material Type 1. 
A I I ~ W  material inodel can easily be added to the JAC3D code. The interface consists of 
the following items. 

C. 1 Initialization of Variables 

Several COMMON variables associated with the material models are initialized in  
the maiu program. MAXMC is the second dimeasion of the EE array used to store tam- 
perature/ thermal-strain pairs and inaterial constauts. The leading dimension of this 
array may dynaiiiically grow to the ~naxi t~iu~n number of temperature points specified 
011 a TEMPERATURE input record, but will always be at least 8. Therefore, there are 
8 x (MAXMC - 2) locations available to the material model to store ~naterial coustauts. If 
more space than this is needed, MACMC may be increased. MAXMCT defines the iiiaxiiiiii~n 
iiumber of inaterial constants for any inaterial that lias a temperature dependence, and 
is used to dimeiision the CM array. Thus if the program contaiiied only the isotlierinal 
elasticlplastic 1110de1, these varialdes would be initialized as show11 below. 

MAXMC = 7 
MAXMCT = 0 

Associated with the material iiuiiiber is the iiuinber of state variables in the model 
(other thaii stress). In the main program, the followiiig assignma:nts specify the i i u m b c ~  

of state variables for each model. 

IEPSIZ(1) = 7 
IEPSIZ(2) - 7 
IEPSIZ(3) - 1 
IEPSIZ(4) = 3 
IEPSIZ(5) = 0 
IEPSIZ(6) = 0 

IEPSIZ(8) = 0 

IEPSIZ(l0) - 9 
IEPSIZ(7) - 1 
IEPSIZ(9) - 0 



For example, the isothermal elastic/plastic model (Material Type 1) n d s  seven storage 
locations (six backstress coml>onents and one storage location for the effective plastic 
strain). As presently progra~iui~d, ten models can be included. The number of models 
can be increased by changing the dimetision of the IEPSIZ array in the EPSZ conimoii 
block: 

COWON EPSZ/IEPSIZ(lO) ,NEPSIZ/ 

If the maximuiii number of state variables is increased beyond 12 for any material model, 
then additional names must be added to the arrays NAMEEL and NMRSEL in SUBROUTINE 
IN, and the PARAMETERS that govern their size must be increased correspondingly. By 
cotivention, the state variable names begin with EPX. 

P A R ” E R  (NCORD-3, WARNP-9, WAREL-21, NGLOBLa9) 
PARMETER (NVRSNP=6, NVRSEL-46) 
DATA NUEEL/ SIGXX , SIGYY , SIGZZ , TAUXY , 
1 JTAUYZJ,JTAUZXJ,’SIGTJ,JTEMPJ,JDEA~J, 
2 JEPXlJ,JEPX2J,JEPX3J,JEPX4J,JEPX5J,JEPX6J, 
3 

1 JTAUXYJ,JTAWZJ,JTAUZXJ,JSIGTJ, 
2 JEPXlJ,JEPX2J,JEPX3J,JEPX4J, ’EPXS’, ’EPXG’, 
3 JEPX7J,JEPX8J,JEPX9J,JEPX10J,JEPXllJ,JEPX12J, 
4 JRllJ,JR2lJ,JR3lJ,JRl2J,JR22J,J~2J,JRl3J,JR23J,J~3J, 
5 JSTRECHXXJ,JSTRECHYYJ,lS~CHZZJ, 
6 ’STRECHXY’,’STRECHYZ’,’STRECHZX’, 
7 JHGlXJ,JHGlYJ,JHGlZJ,JHG2XJ,JHG2YJ,JHG2ZJ, 
8 JHG3XJ,JHG3YJ,JHG3ZJ,JHG4XJ,JHG4YJ,JHG4Z1/ 

’EPX7’, ’EPX8’, JEPX91, JEPXIOJ, JEPXllJ, ’EPX1PJ/ 
DATA NMRSEL/JSIGXXJ,JSIGYYJ,JSIGZZJ, 

Here NVAREL is the dimension of the NAMEEL array, while NVRSEL is the dimension of the 
NWRSEL array. 

C.2 Material Input and Output 

The procedure for reading and echoing model data will now be described. The 
isothermal elastic/plastic model will be used as an example of the statements that mist 
be included for a new material. First, in SUBROUTINE IN, the material type number is 
stored in the array HIWE. 

WORD1 .EQ. ’ISO’ .AMD. WORD2 .EQ. ’=AJ .AMI). 
1 3 .EQ. JPLAJ) THEW 



x 

is at least 8. An arbitrary number of values for each material constaut may be u d  to 
describe the tilaterial's dependence on temperature. A maxiinum of t h e e  words iiiay be 
used to name a material constatit. 

IF(MATTYPE . Eq . 1) THEN 
C 
C ISOTHERMAL ELASTIC PLASTIC MATERIAL 
C 

IF( WORDl .EQ. 'YOU' .AND. WORD2 .EQ. 'MOD') THEN 
EE(l,3,MATNUM) - RVALUE(3) 

ELSE IF( WORDl .EQ. 'POI' .AND. WORD2 .EQ. 'RAT') THEN 
EE(1 ,B,MATNUM) - RVALUE(3) 

ELSE IF( WORDl .EQ. 'YIE' .AND. WORD2 .Eq. 'STR') THEN 
EE(1 '5,MATNUM) - RVALUE(3) 

ELSE IF( WORDl .EQ. 'HAR' .AND. WORD2 .Ed. 'MOD') THEN 
EE(l,G,MATNUM) - RVALUE(3) 

ELSE IF( WORDl .EQ. 'HAR' .AND. WORD2 .EQ. 'PAR') THEN 
EE( 1 >7 'MATNUM) = RVALUE(3) 

ELSE IF( WORDl .EQ. 'BET' THEN 
EE(1,7,MATNUM) = RVALUE(3) 

END IF 

Here the values are stored begiiiuiiig with 3 as the second array index. Locations and 
2 are used to store the temperatures and thermal strains, respectively. If a material 
parameter had a temperature dependence, its values would be stored by varyiiig the first 
index of the EE array from 1 to NTMAX, the maximuill tiumber of temperature points inpiit. 
This model allows the keyword HARDENING PARAMETER as a synonym for BETA. 

,P 

The material constants are echoed in SUBROUTINE PRINTMT. As an example of the 
statetnents that are needed, the following statemellts are used for the isothermal elas- 
~,ic/plastic model. 

IF(MTYPE(N).EQ.l) WORD = 'ISOTHERMAL ELASTIC PLASTIC' 

IF(MTYPE(N) .EQ. 1) THEN 
WRITE (KOVT,SOSO) EE(1,3,N) 



The following FORMAT statements are u d  for the isothermal elastic/plastic model. 

5050 FORMAT(’ YOWGS mlDULUS ’ ,lX,Gi0.3) 

5070 FORMAT(’ YIELD STRESS ’ , 1X ,010.3) 
5080 FORHAT( ’ HARDENING MODULUS ’ , lX, 010.3) 
5090 FORMAT(’ BETA ’,lX,G10.3) 

5060 FORMAT( ’ POISSONS RATIO ’ ,lx,G10.3) 

C.3 Calling the Material Model 

The call to the material model which updates the stress every CC iteration must be 
added to SUBROUTINE USFORH. By convention, the name of the material model subrou- 
tine is SE (for n-e, stress-strain) followed by the material type number. The following 
statement calls the isothermal elastic/pl”mtic model. 

IF(l4TYPE(IMPI) .EQ.l) CALL SEl(EE(l,Z,IMM), 
1 CH(1,LFT) ,TSIG(l,LFT) ,TEPX(NEP) ,WELD 
2 DTHS (LFT) ,IEL) 

Here EE contains the material constants and CH returns the 21 entries defining a modulus 
to be used for the CG line search. TSIG is the current stress in  the deformed but uiiro- 
tat& configuration, TEPX stores the current state variables, DVEL contains the velocity 
gradients, DTHS contains the thermal strains for thermally-lmded yrGblems, md !EL. is 
the number of elements in the current vector block to be processed by the constitutive 
model. 

C.4 Interpolating Temperat ureDependent Material Const ants 

If the new model has moduli that vary with temperature, then SUBROUTINE INTERPl 
must be modified. The interpolated material properties are stored in array CIY. Values for 
the material constants at the beginning and the end of the time step must be calculated. 
As an example, the following ititeryolates four material Constants at the beginning and 
the end of the time step. 

C 
C 
c 

IWTERPOLATE AT THE BEGINNING OF THE STEP 



C 
C 
C 

INTERPOLATE AT THE END OF THE STEP 

C.5 The Diagonal of the Stiffness Matrix 

SUBROUTINE DIAG calculates the precotiditioniiig matrix M to be the diagional of 
the linear stiffness matrix, it5 described in Section 3.3. The two quantities ( X + 2 p ) / V  and 
y/V must be supplied for each element in the material block, where X aiid p are tlia Lain6 
yaraiiieters For the material and V is the element volume. For example, the followiiig code 
is for the isothermal elastic/plastic material model. For this model, EE(l,3) coiitains 
Young's modulus and EE(1,4) contailis Poisson's ratio. 

IF(MTYPE.EQ.1) THEN 
El 0 EE(l.3) *(l .O-EE(l,4) ) /( (1 . O+EE(1,4) ) * (1.0-2.O*EE( I ,4))) 
E2 = 0.5*EE(1, 3) /(1 . O+EE( 1,4)) 
DO 100 I - 1,NEL 

C(1,I) = El/VOL(I) 
C(2,I) - EZ/VOL(I) 

100 COWTINUE 

If the new model has temp"rature-depand~nt niaterial constants, theii the interpolstecl 
values io the CW array should he used instead of the values in the EE array. 



C.6 The Effective Bulk Modulus 

SUBROUTINE THFOR uses ail effective bulk modulus to calculate the therinal expansion 
contribution to the applied loads vector. (The applied loads vector is used only to scale 
the residual force iiorm for coiiiparisoii with the residual tolerance.) The elastic bulk 
iiiodulus must be supplied for each element in the material block. The following code 
performs this calculation for the isothermal elastic/pIastic model, where EE( I ,3) coiitaitis 
Yoiiiig’s modulus and EE(I,4) contains Poisson’s ratio, 

IF(MTYPE.EQ. 1) THEN 
BULK = EE(1,3)/(;.0-2.0*EE(1,4)) 
DO 100 I = 1,NEL 

THSIG(1) = BULK*DTHS(I) 
100 CONTINUE 

As iti SUBROUTINE DIAG, if the model has temperature-dependelit material coiistaiits, CM 
should be used instead of EE. 

C.7 The Effective Shear Modulus 

SUBROUTINE CVIS calculates an effective shear modulus for use in the hourglass 
control logic, as described in Section 4.1.1. The elastic shear modulus must be supplied 
for each element in  the material block. The following code performs this calculation 
for the isotheriiial elastic/plastic model, where EE(1,3) contains YouIig’s modulus and 
EE(lr4) contains Poisson’s ratio. 

IF(MTYPE.EQ. 1) THEN 
DO 100 I = 1,NEL 

GA(1) = 0.5*EE(1,3) / (1 . O+EE( 1,4)) 
100 CONTINUE 

As in  SUBROUTINE DIAG, if the tiiodel has teiiiperature-depeticletlt material cotistallts, CM 
should be used instead of EE. 

C.8 The Line Search Modulus 

The moduli needed to perform the CG litie seardi as described in Sectioii 3.4.2 are 
returned by the material model subroutine i n  the array C. Twenty-our! elltries in the 
(assumed symmetric) 6 x 6 modulus matrix relating the compoueiits of the current stress 
increment to the current strain increment must be supplied by the 1110de1, stored i ~ s  

followa: 

110 



p I 

1 1 1  



C.9 Example of a Material Model Subroutim: Isothermal 
Elast ic/Plast ic 

C 
C 
C 

ELASTIC-PLASTIC MATERIAL WITH ISOTROPIC AND KINEMATIC HARDENING 
THE ROUTINE COMPUTES THE STRESSES FOR NEL ELEMENTS FOR THE 

C JAC3D PROGRAM. 
C 
C 
C DVEL CONTAINS INCREMENTAL STRAINS WITH DXY, DYZ, AND DZX BEING 
C ENGINEERING SHEAR STRAIN qUANTITIES 
C 

I C 
C MODEL ARE STORED IN ARRAY EPX 
C 
C THE CONSTITUTIVE ARRAY C CONTAINS THE ELASTIC OR SECANT 
C CONSTITUTIVE MATRIX STORED AS 
C 
C C(1) C(2) C(6) C(8) C(11) C(16) 
C 
C C(2) C(3) C(7) C(9) C(12) C(17) 
L‘ 
C C(6) C(7) C(5) C(l0) C(13) C(18) 

SEVEN HISTORY VARIABLE OR PLOT VARIABLES FOR THE CONSTITUTIVE 

C THE THERMAL STRAIN IS STORED IN THE DTHS ARRAY I 
C 

C 

C 

INCLUDE ’ COMIN’ 

DIMENSION EE (NTMAX , *) , C (2 1, *) , SIG (6, * 1 , EPX (7, *) , DVEL (9, * 1 , DTHS (*) 

THIRD = 1.0/3.0 

c1 =(I ,3)*EE(1,4)/((1.0+EE(lr4) )*(l .0-2.O*EE(1,4))) 



QBQH - QB*QH 
C 
C COHPUTE TRIAL STRESS 
C 

DO 100 I - I,= 
DXX = DVEL(1,I) 
D W  - DVEL(2,I) 
DZZ - DVEL(3,I) 
DXY - 2.O*DVEL(4,1) 
DYZ = 2.0*DVEL(5,1) 
DZX - 2.O*DVEL(6,1) 
P = Cl*(DXX + DW + 
SIG(1,I) = SIG(l,I)+ 
SIG(2,I) = SIG(2,1)+ 
sIG(3,I) = SIG(3,I)+P+G2*(DZZ-DTHS(I)) 
SIC (4,I) = SIC (4, I) +G*DXY 
SIG(5,I) = SIG(5,I)+G*DYZ 
SIG(6,I) = SIG(G,I)+G*DZX 

100 CONTINUE 
C 

All = G2*THIRD 
A33 = All + C1 
IF(QS .Eq . 0 . 0 )  THEN 

A332Al = A33+2.0*All 
A33A 1 A33-A 11 
A115 = 1.5*Ali 
DO 110 I = 1,NEL 

C(1,I) = A332Al 
C(3,I) = A332Ai 
C(5,I) - A332Al 
C(2,I) = A33Ai 
C(6,I) = A33Al 
C(7,I) = A33A1 
C(4,I) - A115 



C(13,I) = 0.0 
C(14,I) - 0.0 
C(16,I) - 0.0 
C(17,I) - 0.0 
C(18,I) = 0.0 
C(19,I) = 0.0 
C(20,I) = 0.0 

110 CONTINUE 
ELSE 

C 
FACl = 1 . O/(l .5*G2+QH) 
FAC2 - 1.5*G2 
FAC3 = (1. O-QB) *QH 
All = G2*THIRD 
A22 = 2.25*G2*G2*FACl 
A33 = All + Cl 

DO 120 I = 1,NEL 
C 

AK - QS+QBQH*EPX(7,I) 
DAl = SIG\'1, I) -EPX (1, I) 
DA2 3 SIG(2, I) -EPX(2, I) 
DA3 SIG (3, I) -EPX (3, I) 

C 



C 

C 

C 
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Appendix D 
RIB and SEPDB Information 

The followiug inforinatioii is provided for the benefit of the Yucca Mou~ltzill Project. 

D.l  Information from the Reference Information Base Used 
in this Report 

This report coutaius 110 iuformation from the Reference Itifor~natioii Base. 

D.2 Candidate Information for the Reference Information Base 

This report coutaitis 110 candidate information for the Reference Iiiforiiiatioii Base. 

D.3 Candidate Information for the Site and Engineering Prop- 
erties Data Base 

This report contains no caiididate inforniatiou for the Site and Eiigiiieering Proper- 
ties Data Base. 
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